Issue 47, 2020

Structural diversity of ethylzinc derivatives of 3,5-substituted pyrazoles

Abstract

Equimolar reactions of Et2Zn with 3,5-dimethylpyrazole (H-pzMe2), 3,5-di-iso-propylpyrazole (H-pziPr2), 3,5-di-tert-butylpyrazole (H-pztBu2) and indazole (H-ind) were investigated in toluene or tetrahydrofuran (as a coordinating solvent). A series of diverse ethylzinc pyrazolates and indazolates were identified using advanced NMR spectroscopy and the single crystal X-ray diffraction techniques. The NMR experiments indicate that dimeric moieties of the general formula [EtZn(pz)]2 or [Et2Zn2(pz)2(THF)] are favoured in solution. Nevertheless, these types of complexes are kinetically labile and tend to undergo ligand scrambling reactions according to the Schlenk equilibrium. For example, the alkyl substituents in the pzMe2 and pziPr2 ligands do not appear to be a strong determinant of the dimeric moieties and the composition of the isolated complexes by crystallisation from the parent reaction mixture varies between spiro-type tri- and tetranuclear aggregates, [Et2Zn3(pz)4(THF)x] (x = 0 or 2) and [Et2Zn4(pz)6(THF)2], respectively. The nonstoichiometric formula of these organozinc derivatives is likely related to both the Schlenk-type equilibria and solubility of the respective moieties. In turn, the high steric demands of the 3,5-di-tert-butylpyrazolate ligand promote the dimeric form in solution and the solid state. Interestingly, the ethylzinc indazolate complex also does not undergo a redistribution reaction and yields a dimer.

Graphical abstract: Structural diversity of ethylzinc derivatives of 3,5-substituted pyrazoles

Supplementary files

Article information

Article type
Paper
Submitted
29 Aug 2020
Accepted
05 Nov 2020
First published
05 Nov 2020

Dalton Trans., 2020,49, 17388-17394

Structural diversity of ethylzinc derivatives of 3,5-substituted pyrazoles

S. Komorski, M. K. Leszczyński, I. Justyniak and J. Lewiński, Dalton Trans., 2020, 49, 17388 DOI: 10.1039/D0DT03026K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements