Issue 47, 2020

A broad view on the complexity involved in water oxidation catalysis based on Ru–bpn complexes

Abstract

A new Ru complex with the formula [Ru(bpn)(pic)2]Cl2 (where bpn is 2,2′-bi(1,10-phenanthroline) and pic stands for 4-picoline) (1Cl2) is synthesized to investigate the true nature of active species involved in the electrochemical and chemical water oxidation mediated by a class of N4 tetradentate equatorial ligands. Comprehensive electrochemical (by using cyclic voltammetry, differential pulse voltammetry, and controlled potential electrolysis), structural (X-ray diffraction analysis), spectroscopic (UV-vis, NMR, and resonance Raman), and kinetic studies are performed. 12+ undergoes a substitution reaction when it is chemically (by using NaIO4) or electrochemically oxidized to RuIII, in which picoline is replaced by an hydroxido ligand to produce [Ru(bpn)(pic)(OH)]2+ (22+). The former complex is in equilibrium with an oxo-bridged species {[Ru(bpn)(pic)]2(μ-O)}4+ (34+) which is the major form of the complex in the RuIII oxidation state. The dimer formation is the rate determining step of the overall oxidation process (kdimer = 1.35 M−1 s−1), which is in line with the electrochemical data at pH = 7 (kdimer = 1.4 M−1 s−1). 34+ can be reduced to [Ru(bpn)(pic)(OH2)]2+ (42+), showing a sort of square mechanism. All species generated in situ at pH 7 have been thoroughly characterized by NMR, mass spectrometry, UV-Vis and electrochemical techniques. 12+ and 42+ are also characterized by single crystal X-ray diffraction analysis. Chemical oxidation of 12+ triggered by CeIV shows its capability to oxidize water to dioxygen.

Graphical abstract: A broad view on the complexity involved in water oxidation catalysis based on Ru–bpn complexes

Supplementary files

Article information

Article type
Paper
Submitted
13 Oct 2020
Accepted
02 Nov 2020
First published
03 Nov 2020

Dalton Trans., 2020,49, 17375-17387

A broad view on the complexity involved in water oxidation catalysis based on Ru–bpn complexes

A. Ghaderian, A. Franke, M. Gil-Sepulcre, J. Benet-Buchholz, A. Llobet, I. Ivanović-Burmazović and C. Gimbert-Suriñach, Dalton Trans., 2020, 49, 17375 DOI: 10.1039/D0DT03548C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements