Issue 24, 2020

Friction of physisorbed nanotubes: rolling or sliding?

Abstract

The structure and motion of carbon and h-BN nanotubes (NTs) deposited on graphene is inquired theoretically by simulations based on state-of-the-art interatomic force fields. Results show that any typical cylinder-over-surface approximation is essentially inaccurate. NTs tend to flatten at the interface with the substrate and upon driving they can either roll or slide depending on their size and on their relative orientation with the substrate. In the epitaxially aligned orientation we find that rolling is always the main mechanism of motion, producing a kinetic friction linearly growing with the number of walls, in turn causing an unprecedented supra-linear scaling with the contact area. A 30 degrees misalignment raises superlubric effects, making sliding favorable against rolling. The resulting rolling-to-sliding transition in misaligned NTs is explained in terms of the faceting appearing in large multi-wall tubes, which is responsible for the increased rotational stiffness. Modifying the geometrical conditions provides an additional means of drastically tailoring the frictional properties in this unique tribological system.

Graphical abstract: Friction of physisorbed nanotubes: rolling or sliding?

Supplementary files

Article information

Article type
Paper
Submitted
05 Feb 2020
Accepted
09 Jun 2020
First published
09 Jun 2020

Nanoscale, 2020,12, 13046-13054

Friction of physisorbed nanotubes: rolling or sliding?

D. Mandelli and R. Guerra, Nanoscale, 2020, 12, 13046 DOI: 10.1039/D0NR01016B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements