Issue 24, 2020

Disturbed mitochondrial quality control involved in hepatocytotoxicity induced by silica nanoparticles

Abstract

The extensive application of silica nanoparticles (SiNPs) brings about inevitable occupational, environmental, and even iatrogenic exposure for human beings. The liver, which is rich in mitochondria, is one of the target organs of SiNPs, but the underlying mechanisms by which these nanoparticles (NPs) interact with liver mitochondria and affect their functions still remain unclear. In the present study, we examined silicon nanoparticle (SiNP)-induced mitochondrial dysfunction, and further revealed its negative effects on mitochondrial quality control (MQC) in the human liver cell line L-02, including mitochondrial dynamics, mitophagy and biogenesis. Consequently, SiNPs induced cellular injury, accompanied by mitochondrial dysfunction, including mitochondrial reactive oxygen generation and mitochondrial membrane potential collapse. In line with the transmission electron microscopy (TEM)-observed abnormalities in the mitochondrial morphology and length distribution, a fission phenotype was manifested in the mitochondria of SiNP-exposed cells, and up-regulated DRP1 and FIS1, and down-regulated MFN1, were detected. Furthermore, the enhanced LC3II level, colocalization of the mitochondria and lysosomes, activated PINK1/Parkin signaling, and accumulated p62 in the SiNP-exposed cells suggested mitophagy disorder triggered by SiNPs. In addition, SiNPs inhibited mito-biogenesis, as evidenced by the reduced mitochondrial mass and mtDNA copy number, as well as the suppressed PGC1α-NRF1-TFAM signaling pathway. Overall, the study demonstrates that SiNPs trigger hepatocytotoxicity through interfering with the MQC process, bringing in excessive mitochondrial fission, mitophagy disorder and suppressed mito-biogenesis, leading to mitochondrial dysfunction and ensuing cell damage, and ultimately contributing to the occurrence and development of liver diseases. Our research could provide important experimental evidence related to safety assessments of SiNPs, especially in the field of biomedical applications.

Graphical abstract: Disturbed mitochondrial quality control involved in hepatocytotoxicity induced by silica nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
06 Mar 2020
Accepted
26 May 2020
First published
27 May 2020

Nanoscale, 2020,12, 13034-13045

Disturbed mitochondrial quality control involved in hepatocytotoxicity induced by silica nanoparticles

Y. Qi, R. Ma, X. Li, S. Lv, X. Liu, A. Abulikemu, X. Zhao, Y. Li, C. Guo and Z. Sun, Nanoscale, 2020, 12, 13034 DOI: 10.1039/D0NR01893G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements