Issue 50, 2020

A simple method for the synthesis of N-difluoromethylated pyridines and 4-pyridones/quinolones by using BrCF2COOEt as the difluoromethylation reagent

Abstract

We describe a novel transition metal-free method for the synthesis of N-difluoromethylated pyridines and 4-pyridones/quinolones by using readily available ethyl bromodifluoroacetate as a fluorine source. The formation of N-difluoromethylated pyridines involves a two-step process in which N-alkylation by ethyl bromodifluoroacetate is followed by in situ hydrolysis of the ester and decarboxylation. Besides optimizing the N-difluoromethylation conditions and assessing the influence of steric and electronic effects on the outcome of the reaction, we have synthesized the N-difluoromethylated analogues of two fluorophores and demonstrated that their spectroscopic properties can be improved through replacement of N-CH3 group by N-CF2H.

Graphical abstract: A simple method for the synthesis of N-difluoromethylated pyridines and 4-pyridones/quinolones by using BrCF2COOEt as the difluoromethylation reagent

Supplementary files

Article information

Article type
Paper
Submitted
20 Jul 2020
Accepted
07 Aug 2020
First published
13 Aug 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 29829-29834

A simple method for the synthesis of N-difluoromethylated pyridines and 4-pyridones/quinolones by using BrCF2COOEt as the difluoromethylation reagent

A. Gandioso, M. El Fakiri, A. Rovira and V. Marchán, RSC Adv., 2020, 10, 29829 DOI: 10.1039/D0RA06322C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements