Issue 7, 2020

One-pot synthesis of water-soluble and biocompatible superparamagnetic gadolinium-doped iron oxide nanoclusters

Abstract

The synthesis of superparamagnetic nanoclusters is critical for ultra-sensitive magnetic resonance imaging (MRI). Herein, we describe the synthesis of water-soluble, biocompatible and superparamagnetic gadolinium-doped iron oxide nanoclusters (GdIO NCs) via a one-pot reaction by thermal decomposition of ferric oleate and gadolinium oleate precursors with α,ω-dicarboxyl poly(ethylene glycol) as a surfactant. The resulting water-dispersible GdIO NCs possess good stability and monodispersity with narrow size distribution, and exhibit superparamagnetic behaviors. We also explored the effect of gadolinium doping amounts on the magnetic properties and longitudinal (r1) and transverse relaxivity (r2) of the nanoclusters. In addition, the GdIO NCs can be functionalized with fluorescein isothiocyanate (FITC) while maintaining their magnetic properties and biocompatibility. The GdIO NCs and FITC conjugated NCs were preliminarily evaluated as MRI and fluorescent probes. The results show that the GdIO NCs provide an important nano-platform for theranostics with non-invasive MRI and optical monitoring capabilities.

Graphical abstract: One-pot synthesis of water-soluble and biocompatible superparamagnetic gadolinium-doped iron oxide nanoclusters

Supplementary files

Article information

Article type
Paper
Submitted
09 Oct 2019
Accepted
07 Jan 2020
First published
10 Jan 2020

J. Mater. Chem. B, 2020,8, 1432-1444

One-pot synthesis of water-soluble and biocompatible superparamagnetic gadolinium-doped iron oxide nanoclusters

H. Xiang, P. Dong, L. Pi, Z. Wang, T. Zhang, S. Zhang, C. Lu, Y. Pan, H. Yuan and H. Liang, J. Mater. Chem. B, 2020, 8, 1432 DOI: 10.1039/C9TB02212K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements