Issue 7, 2020

A new strategy to improve the water solubility of an organic fluorescent probe using silicon nanodots and fabricate two-photon SiND-ANPA-N3 for visualizing hydrogen sulfide in living cells and onion tissues

Abstract

A small-molecule fluorescent probe offers unique advantages for the detection of hydrogen sulfide (H2S) and other reactive small molecules including high sensitivity, cell permeability and high spatiotemporal resolution. Generally, in order to obtain good cell permeability, fluorescent probes are liposoluble, which in turn leads to poor water solubility. Thus, it is regrettable that most of these fluorescent probes cannot be used in fully aqueous systems and hence, organic solvents are used, which may cause negative effects on living cells. Silicon nanodots (SiNDs) have been widely used in many fields due to good water solubility, benign nature, biocompatibility and low toxicity. Herein, we proposed a two-photon SiND-ANPA-N3 fluorescent probe with good water solubility, excellent biocompatibility and low toxicity; it is suitable to detect H2S in totally aqueous media and living cells. This strategy may provide a technically simple and facile approach for designing fluorescent probes with excellent solubility, benign nature, and biocompatibility for use in fully aqueous systems and in vivo.

Graphical abstract: A new strategy to improve the water solubility of an organic fluorescent probe using silicon nanodots and fabricate two-photon SiND-ANPA-N3 for visualizing hydrogen sulfide in living cells and onion tissues

Supplementary files

Article information

Article type
Paper
Submitted
11 Oct 2019
Accepted
06 Jan 2020
First published
08 Jan 2020

J. Mater. Chem. B, 2020,8, 1422-1431

A new strategy to improve the water solubility of an organic fluorescent probe using silicon nanodots and fabricate two-photon SiND-ANPA-N3 for visualizing hydrogen sulfide in living cells and onion tissues

Y. Fu, S. Shen, X. Guo and H. Wang, J. Mater. Chem. B, 2020, 8, 1422 DOI: 10.1039/C9TB02237F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements