New organometallic ruthenium(ii) complexes with purine analogs – a wide perspective on their biological application†‡
Abstract
Three half-sandwich organometallic ruthenium(II) complexes containing purine analogs such as triazolopyrimidines of general formula [(η6-p-cym)Ru(L)Cl2], where p-cym represents p-cymene and L is 5,6,7-trimethyl-1,2,4-triazolo[1,5-a]pyrimidine (tmtp for 1), 5,7-diethyl-1,2,4-triazolo[1,5-a]pyrimidine (detp for 2) and 5-methyl-1,2,4-triazolo[1,5-a]pyrimidin-7(4H)-one (HmtpO for 3), have been synthesized and characterized by elemental analysis, infrared, multinuclear magnetic resonance spectroscopic techniques (1H, 13C, 15N), and single-crystal X-ray diffraction (for 1 and 2). All these complexes have been thoroughly screened for their in vitro cytotoxicity against MCF-7 and HeLa cell lines as well as L929 murine fibroblast cells, indicating [(η6-p-cym)Ru(HmtpO)Cl2] (3) as the most active representative against the HeLa cell line and simultaneously being 64-fold less toxic to normal L929 murine fibroblast cells than cisplatin. At the same time, 3 has shown antimetastatic activity comparable to NAMI-A against HeLa cells both after 24 and 48 h of treatment in a wound healing assay. In order to better understand the mechanism of anticancer action and differences in the cytotoxic activity of 1–3, the studies were expanded to determining their lipophilicity, the kinetic stability at pH 6.5–8, the effect on reactive oxygen species (ROS) production in HeLa cells and interactions with significant biomolecules (DNA and albumin) by using molecular docking and circular dichroism (CD) experiments. Furthermore, antiparasitic studies against L. braziliensis, L. infantum and T. cruzi reveal that the newly synthesized complexes 1–3 are very promising candidates which can compete with commercial antiparasitic drugs. Complex 3 in particular, on top of exhibiting a high antiparasitic effect (IC50 < 1 μM against two strains), reaches a selectivity index >1000.