Sulfur nanoparticles/Ti3C2Tx MXene with an optimum sulfur content as a cathode for highly stable lithium–sulfur batteries
Abstract
Lithium–sulfur batteries have a high theoretical energy density but they need better sulfur host materials to retain the lithium polysulfide shuttle effect, which results in the batteries' capacity fading. Titanium carbide MXene (Ti3C2Tx MXene) is an excellent host for the sulfur cathode because of its layered-stacked structure and many surface termination groups. The sulfur content in S/Ti3C2Tx MXene composites is an important factor affecting the cathodes' electrochemical performance. In this work, S/Ti3C2Tx MXene composites with different sulfur contents are prepared by a one-step hydrothermal process, and the influence of the sulfur content in the S/Ti3C2Tx MXene composite on the S/Ti3C2Tx MXene cathode's electrochemical performance is studied. When the mass ratio of sulfur to MXene in the reactant is 4 : 1, the sulfur nanoparticles are uniformly filled in the layered-stacked structure. The layered-stacked structure can buffer the volume expansion of sulfur during cycling and the surface termination groups exhibit strong adsorption of LiPSn. Thus, the S/MXene composite with an optimum sulfur content (67.0 wt%) demonstrates an excellent electrochemical performance, including a high initial reversible capacity (1277 mA h g−1 at 0.5 C) and the best cycling performance (1059 mA h g−1 at 0.5 C after 100 cycles). This work offers a guide to developing advanced S-based cathode materials with an appropriate S content for lithium sulfur batteries.