Issue 12, 2021

Ultralow magnetostrictive flexible ferromagnetic nanowires

Abstract

The integration of magneto-electric and spintronic sensors to flexible electronics presents a huge potential for advancing flexible and wearable technologies. Magnetic nanowires are core components for building such devices. Therefore, realizing flexible magnetic nanowires with engineered magneto-elastic properties is key to flexible spintronic circuits, as well as creating unique pathways to explore complex flexible spintronic, magnonic, and magneto-plasmonic devices. Here, we demonstrate highly resilient flexible ferromagnetic nanowires on transparent flexible substrates for the first time. Through extensive magneto-optical Kerr experiments, exploring the Villari effect, we reveal an ultralow magnetostrictive constant in nanowires, a two-order reduced value compared to bulk values. In addition, the flexible magnetic nanowires exhibit remarkable resilience sustaining bending radii ∼5 mm, high endurance, and enhanced elastic limit compared to thin films of similar thickness and composition. The observed performance is corroborated by our micro-magnetic simulations and can be attributed to the reduced size and strong nanostructure-interfacial effects. Such stable magnetic nanowires with ultralow magnetostriction open up new opportunities for stable surface mountable and wearable spintronic sensors, advanced nanospintronic circuits, and for exploring novel strain-induced quantum effects in hybrid devices.

Graphical abstract: Ultralow magnetostrictive flexible ferromagnetic nanowires

Associated articles

Supplementary files

Article information

Article type
Communication
Submitted
24 Nov 2020
Accepted
01 Mar 2021
First published
02 Mar 2021
This article is Open Access
Creative Commons BY-NC license

Nanoscale, 2021,13, 6043-6052

Ultralow magnetostrictive flexible ferromagnetic nanowires

G. Muscas, P. E. Jönsson, I. G. Serrano, Ö. Vallin and M. V. Kamalakar, Nanoscale, 2021, 13, 6043 DOI: 10.1039/D0NR08355K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements