Issue 42, 2021

Virus-templated magnetic composite hydrogels for surface immobilization of mimic-free-lipase

Abstract

Surface immobilization of enzymes on magnetic-recoverable carriers is of great interest and importance for the biocatalysis of relatively large molecules. In this work, the nanosized amino-rich filamentous M13 virus, a versatile biological scaffold, was applied as the unique soft backbone for lipase immobilization. Based on the structure and capsid proteins of M13 phages, the magnetic-recoverable mimic-free-lipases (MFLs) composed of the M13 hydrogels and magnetic particles were developed in two designs. In the first design, nanosized wild M13 phages were crosslinked into a phage hydrogel through the N-terminals of pVIII peptides while NH2-Fe3O4 magnetic nanoparticles (MNPs) were attached to the M13 virus through glutaraldehyde, forming the M13-(NH2-Fe3O4) magnetic phage hydrogel. In the second design, special M13 with Fe3O4 affinity pIII-peptide (FAP-M13) was biopanned for strongly binding towards bare Fe3O4 with the “hook”-like pIII-peptide (N-LPLSTQH-C). TEM observation confirmed the direct grasp of FAP-M13 on bare Fe3O4, forming the magnetic (FAP-M13)-Fe3O4 virus hydrogel. Lipases were uniformly anchored on the phage surface of nanoscale by crosslinking with the N-terminals of pVIII peptides, and then lipase@M13-(NH2-Fe3O4) and lipase@(FAP-M13)-Fe3O4 MFLs were constructed. For both MFLs, high activity recovery yield (>95%) and efficient magnetic separation were characterized. Significantly reduced MNP-usage-amount and enhanced lipase-loading-amount both by about 40 folds were obtained, compared with the conventional NH2-Fe3O4 carriers. The quantified Km and Vmax/Km values were almost equal to those of the free lipases, verifying free-enzyme-mimicking features of the MFLs. High pH-tolerance, wide temperature adaptability, enhanced thermal stability and stable magnetic separation capability of both MFLs were also observed. In particular, the (FAP-M13)-Fe3O4 magnetic virus hydrogel simply using bare Fe3O4 MNPs would be more convenient and economical in the scaled-up biocatalysis.

Graphical abstract: Virus-templated magnetic composite hydrogels for surface immobilization of mimic-free-lipase

Supplementary files

Article information

Article type
Paper
Submitted
04 Jun 2021
Accepted
22 Sep 2021
First published
21 Oct 2021

Nanoscale, 2021,13, 17871-17880

Virus-templated magnetic composite hydrogels for surface immobilization of mimic-free-lipase

W. Qi and H. Yu, Nanoscale, 2021, 13, 17871 DOI: 10.1039/D1NR03571A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements