Issue 42, 2021

Towards machine learning discovery of dual antibacterial drug–nanoparticle systems

Abstract

Artificial Intelligence/Machine Learning (AI/ML) algorithms may speed up the design of DADNP systems formed by Antibacterial Drugs (AD) and Nanoparticles (NP). In this work, we used IFPTML = Information Fusion (IF) + Perturbation-Theory (PT) + Machine Learning (ML) algorithm for the first time to study of a large dataset of putative DADNP systems composed by >165 000 ChEMBL AD assays and 300 NP assays vs. multiple bacteria species. We trained alternative models with Linear Discriminant Analysis (LDA), Artificial Neural Networks (ANN), Bayesian Networks (BNN), K-Nearest Neighbour (KNN) and other algorithms. IFPTML-LDA model was simpler with values of Sp ≈ 90% and Sn ≈ 74% in both training (>124 K cases) and validation (>41 K cases) series. IFPTML-ANN and KNN models are notably more complicated even when they are more balanced Sn ≈ Sp ≈ 88.5%–99.0% and AUROC ≈ 0.94–0.99 in both series. We also carried out a simulation (>1900 calculations) of the expected behavior for putative DADNPs in 72 different biological assays. The putative DADNPs studied are formed by 27 different drugs with multiple classes of NP and types of coats. In addition, we tested the validity of our additive model with 80 DADNP complexes experimentally synthetized and biologically tested (reported in >45 papers). All these DADNPs show values of MIC < 50 μg mL−1 (cutoff used) better that MIC of AD and NP alone (synergistic or additive effect). The assays involve DADNP complexes with 10 types of NP, 6 coating materials, NP size range 5–100 nm vs. 15 different antibiotics, and 12 bacteria species. The IFPTML-LDA model classified correctly 100% (80 out of 80) DADNP complexes as biologically active. IFPMTL additive strategy may become a useful tool to assist the design of DADNP systems for antibacterial therapy taking into consideration only information about AD and NP components by separate.

Graphical abstract: Towards machine learning discovery of dual antibacterial drug–nanoparticle systems

Supplementary files

Article information

Article type
Paper
Submitted
28 Jun 2021
Accepted
12 Oct 2021
First published
14 Oct 2021

Nanoscale, 2021,13, 17854-17870

Towards machine learning discovery of dual antibacterial drug–nanoparticle systems

K. Diéguez-Santana and H. González-Díaz, Nanoscale, 2021, 13, 17854 DOI: 10.1039/D1NR04178A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements