New poly-imidazolium–triazole particles by CuAAC cross-linking of calix[4]arene bis-azide/alkyne amphiphiles – a prospective support for Pd in the Mizoroki–Heck reaction†
Abstract
A new imidazolium amphiphilic calix[4]arene with terminal acetylene fragments in the polar region was synthesized according to a two step scheme including regioselective chloromethylation of distal di-O-butyl calix[4]arene and subsequent interaction with 1-(hex-5-yn-1-yl)-1H-imidazole. The aggregation properties (CAC, the size and zeta potential of aggregates) of alkynyl calix[4]arene as well as of previously synthesized azidopropyl calix[4]arene and their 1 : 1 mixture were disclosed. Macrocycles with azide and alkyne fragments in the polar region were covalently cross-linked under CuAAC conditions in water. Successful cross-linking of molecules has been proven by IR spectroscopy and MALDI-TOF spectrometry. The obtained polymeric particles were studied both in solution and the solid state and the presence of submicron (∼200 nm) and micron (∼1–5 μm) particles with the prevalence of the latter was found. The average molecular weight of the polymer according to the static light scattering data was found to be 639 ± 44 kDa. The obtained polymeric imidazolium–triazole particles were tested as a support for Pd(OAc)2 in the Mizoroki–Heck reaction carried out in both organic and water media. In both solvents (especially in water) the addition of imidazolium–triazole particles to Pd(OAc)2 increased the conversion of 4-iodanisole. It was found that the ratio between the products (1,1 and 1,2-substituted ethylenes) changes drastically on going from DMF to water from 1 : 5 to 1 : 40 when using supported Pd(OAc)2.