Metal–organic framework-derived porous ternary ZnCo2O4 nanoplate arrays grown on carbon cloth for simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid†
Abstract
Metal–organic frameworks derived from ternary metal oxide directly grown on the conductive substrate have attracted great interest in electrochemical sensing. In this work, metal–organic framework-derived ternary ZnCo2O4 nanoplate arrays that were grown on carbon cloth (ZnCo2O4 NA/CC) are fabricated and applied for the electrochemical determination of ascorbic acid (AA), dopamine (DA), and uric acid (UA). Field emission scanning electron microscope (FESEM) reveals that a network-like CC substrate is covered with considerable nanoplate arrays, presenting a large specific area. X-ray photoelectron spectroscopy (XPS) demonstrates the nanoplate arrays to be composed of ZnCo2O4. Benefiting from the unique array morphology and ternary element composition, the ZnCo2O4 NA/CC shows desirable performances for simultaneous detection of AA, DA, and UA. The individual detection limits are 7.14 μM for AA, 0.25 μM for DA, and 0.33 μM for UA. Additionally, the ZnCo2O4 NA/CC is successfully applied for the quantitative determination of AA, DA, and UA in spiked serum samples, showing its great application potential.