A bilayer coating as an oxygen-transfer cascade for the electrochemical ambient conversion of methane to oxygenates†
Abstract
Oxidation of methane at ambient conditions to useful oxygenates at a bilayer-coated electrode is demonstrated. The composition of the coating, a Mn porphyrin mediator layer on top of a N(OH)2/NiOOH one, allows a cascade of oxygen transfer events upon applying a potential. It is shown, using (spectro)electrochemical techniques, density functional theory computations and product analytical methods, that formate and methanol accompanied by CO2 suppression can be observed at a certain potential range. This can lead to further development of similar oxygen/electron transfer cascades for possible use in devices for energy conversion and fuel/product generation.