The cation-dependent structural, magnetic and optical properties of a family of hypophosphite hybrid perovskites†
Abstract
Hypophosphite hybrid perovskites have recently received widespread attention due to their diverse structural and magnetic properties, negative thermal expansion and photoluminescence behaviour. Herein, we report two new three-dimensional hybrid perovskites containing unusually large organic cations, pyrrolidinium and 2-hydroxyethylammonium. We report the crystal structures of these new manganese–hypophosphite frameworks and their magnetic and optical properties. We also report the magnetic and optical properties of two previously discovered analogues, dimethylammonium and imidazolium manganese hypophosphites. Both new compounds crystallize in a monoclinic structure, space group P21/n, with ordered organic cations at room temperature. Magnetic studies show that all studied compounds are examples of canted antiferromagnets but the weak ferromagnetic contribution and the ordering temperature are significantly modulated by the type of organic cation located in the cavity of the framework. We discuss the origin of this behaviour. Upon ultraviolet excitation, all compounds exhibit broadband photoluminescence associated with the 4T1g(G) → 6A1g(S) transition of octahedrally coordinated Mn2+ ions. The position of the PL band depends on the type of organic cation, being the most blue-shifted for the imidazolium analogue (646 nm) and the most red-shifted for the pyrrolidinium counterpart (689 nm). The most interesting property of the studied hypophosphites is, however, the strong temperature dependence of the photoluminescence intensity, suggesting the possible application of these compounds in non-contact optical thermometry.