Issue 12, 2022

Multielement analysis in soils using nitrogen microwave inductively coupled atmospheric-pressure plasma mass spectrometry

Abstract

In this study, we employed nitrogen microwave inductively coupled atmospheric-pressure plasma (MICAP) combined with quadrupole mass spectrometry (MS) and a liquid sample introduction system to analyze heavy metals in soils. The vanadium, cobalt, nickel, zinc, copper, chromium, arsenic, lead, and cadmium contents in seven reference and three environmental soil samples determined using MICAP-MS were within the uncertainty of the reference values, indicating that MICAP-MS is promising for soil analysis similar to the conventional inductively coupled plasma mass spectrometry (ICP-MS) technique. In addition, the limits of detection (LODs) and sensitivity of both techniques using N2 and Ar plasma were of the same order of magnitude. Furthermore, the performance of MICAP-MS under different N2 purity was investigated, and we found that the plasma formation and ionization efficiency were not influenced by the impurities in the gas. A prominent advantage of MICAP-MS is the low operating cost associated with gas consumption. In this work, MICAP-MS used nitrogen, which is cheaper than argon, and consumed 25% less gas than ICP-MS. Using low-purity N2 can further reduce the gas cost, making MICAP-MS more cost effective than ICP-MS. These results suggest that MICAP-MS is a promising alternative to ICP-MS for the analysis of heavy metals in the soil.

Graphical abstract: Multielement analysis in soils using nitrogen microwave inductively coupled atmospheric-pressure plasma mass spectrometry

Supplementary files

Article information

Article type
Paper
Submitted
15 Jul 2022
Accepted
05 Oct 2022
First published
12 Oct 2022
This article is Open Access
Creative Commons BY license

J. Anal. At. Spectrom., 2022,37, 2556-2562

Multielement analysis in soils using nitrogen microwave inductively coupled atmospheric-pressure plasma mass spectrometry

Z. You, A. Akkuş, W. Weisheit, T. Giray, S. Penk, S. Buttler, S. Recknagel and C. Abad, J. Anal. At. Spectrom., 2022, 37, 2556 DOI: 10.1039/D2JA00244B

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements