Issue 15, 2022

Broadened optical absorption, enhanced photoelectric conversion and ultrafast carrier dynamics of N, P co-doped carbon dots

Abstract

Carbon dots (CDs) have attracted extensive attention for their unique properties and promising applications in many fields. Many efforts have been made to improve the optical and physicochemical properties of CDs using an atomic doping strategy; however, the photoelectric properties of CD-based devices have been less studied and the photocurrent density is far from satisfactory for practical operation. Deep understanding of the doping effects on the electronic structure and photophysical properties of CDs is fundamental and essential for effectively improving the optical and photoelectrical performance of CD-based devices. Here, we have synthesized nitrogen (N) and phosphorus (P) co-doped CDs (N, P-CDs) through a one-step hydrothermal approach, and systematically investigated the effects of P-dopants on the improved optical and photoelectric properties of N, P-CDs. The introduction of P atoms into N-CDs significantly changes the electronic structure and extends the absorption spectral region, enhancing the light-harvesting ability of N, P-CDs. Meanwhile, the regulated carrier dynamics have been investigated using time-resolved fluorescence and transient absorption spectroscopy. We found that the carrier recombination was decreased with introducing P atoms, and the photogenerated electrons in the higher excited states could be efficiently transferred to the lowest excited state. Moreover, the photocurrent density of N, P-CDs was increased by twelve times compared with that of N-CDs. Therefore, the effective doping of P atoms can significantly regulate the electronic structure, optical properties, carrier dynamics and photoelectric conversion of N, P-CDs. The achieved broadband light-harvesting, good photoelectric properties and photostability of the as-prepared N, P-CDs demonstrate an important example of P-doping to improve the optical and photoelectrical properties of CD-based devices.

Graphical abstract: Broadened optical absorption, enhanced photoelectric conversion and ultrafast carrier dynamics of N, P co-doped carbon dots

Supplementary files

Article information

Article type
Paper
Submitted
12 Jan 2022
Accepted
14 Mar 2022
First published
15 Mar 2022

Nanoscale, 2022,14, 5794-5803

Broadened optical absorption, enhanced photoelectric conversion and ultrafast carrier dynamics of N, P co-doped carbon dots

Y. Pan, Z. Wei, M. Ma, X. Zhang, Z. Chi, Y. He, X. Wang, X. Ran and L. Guo, Nanoscale, 2022, 14, 5794 DOI: 10.1039/D2NR00211F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements