Issue 24, 2022

Reply to the ‘Comment on “Realization of the Zn3+ oxidation state”’ by Y. Shang, N. Shu, Z. Zhang, P. Yang and J. Xu, Nanoscale, 2022, 14, DOI: 10.1039/D1NR07031B

Abstract

In a recent paper (https://doi.org/10.1039/D1NR02816B), we suggested that Zn can assume a +3-oxidation state when interacting with super-electrophilic clusters, BeB11(CN)12 and BeB23(CN)22. In a comment to our paper (https://doi.org/10.1039/D1NR07031B), Shang et al. have questioned this suggestion. Using density functional theory with the TPSSh functional and def2-SVP basis sets in the Gaussian16 software and semiempirical localized orbital bonding analysis (LOBA), the authors have made three major claims: (1) the oxidation state of Zn in Zn[BeB11(CN)12] and Zn[BeB23(CN)22] is +2; (2) electron affinities are not reliable to probe the oxidation states; and (3) our results are “misleading” because these are based on the VASP code. According to these authors, VASP is not suitable for small clusters because it uses projected augmented wave (PAW) pseudopotentials. In the following, we show that these claims are invalid, caused by both misunderstanding and the authors’ use of a lower-level theory.

Graphical abstract: Reply to the ‘Comment on “Realization of the Zn3+ oxidation state”’ by Y. Shang, N. Shu, Z. Zhang, P. Yang and J. Xu, Nanoscale, 2022, 14, DOI: 10.1039/D1NR07031B

Associated articles

Article information

Article type
Comment
Submitted
23 Feb 2022
Accepted
21 May 2022
First published
09 Jun 2022

Nanoscale, 2022,14, 8881-8885

Reply to the ‘Comment on “Realization of the Zn3+ oxidation state”’ by Y. Shang, N. Shu, Z. Zhang, P. Yang and J. Xu, Nanoscale, 2022, 14, DOI: 10.1039/D1NR07031B

H. Fang, H. Banjade, Deepika and P. Jena, Nanoscale, 2022, 14, 8881 DOI: 10.1039/D2NR01066F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements