Issue 14, 2022, Issue in Progress

pH-regulated hydrothermal synthesis and characterization of Sb4O5X2 (X = Br/Cl) and its use for the dye degradation of methyl orange both with and without light illumination

Abstract

A pH-regulated hydrothermal synthesis method was employed to synthesize Sb4O5Br2 and Sb4O5Cl2 crystallites. Characterization is done by single crystal X-ray diffraction, powder X-ray diffraction, infra-red spectroscopy, scanning electron microscopy and DFT studies. The compounds crystallize in monoclinic symmetry with a P21/c space group. Complete structural analysis of the Sb4O5Br2 compound by using single crystal X-ray diffraction data is performed for the first time and a comparative study with Sb4O5Cl2 is also discussed. The SEM study reveals that the surface morphology changes with the variation of pH for bromide compounds, whereas pH change does not affect the morphology of the chloride analogues. Electronic band structures of the synthesized oxyhalides were investigated in order to understand their catalytic effects in the dye degradation reactions in dark as well as sunlight conditions.

Graphical abstract: pH-regulated hydrothermal synthesis and characterization of Sb4O5X2 (X = Br/Cl) and its use for the dye degradation of methyl orange both with and without light illumination

Supplementary files

Article information

Article type
Paper
Submitted
23 Feb 2022
Accepted
05 Mar 2022
First published
15 Mar 2022
This article is Open Access
Creative Commons BY license

RSC Adv., 2022,12, 8374-8384

pH-regulated hydrothermal synthesis and characterization of Sb4O5X2 (X = Br/Cl) and its use for the dye degradation of methyl orange both with and without light illumination

S. Paul, B. Sen, N. Chakraborty, S. Das, S. Mondal, A. P. Chattopadhyay and S. I. Ali, RSC Adv., 2022, 12, 8374 DOI: 10.1039/D2RA01215D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements