Issue 54, 2022

Adsorption of sulfur into an alkynyl-based covalent organic framework for mercury removal

Abstract

Highly efficient removal of Hg(II) has been previously achieved through the adsorption by functionalized covalent organic frameworks (COFs). Among these COFs, thioether groups need to be deliberately introduced into the pores of COFs through either a bottom-up synthesis or post-synthesis strategy. Herein, we report a simple mercury removal strategy that used a stable alkynyl (–C[triple bond, length as m-dash]C–) based covalent organic framework (TP-EDDA COF) as an adsorbent for Hg(II) removal. Sulfur vapor was first adsorbed by the TP-EDDA COF due to the van der Waals interaction between adsorbed sulfur and alkynyl groups. The Hg(II) removal capability was then evaluated for the sulfur loaded TP-EDDA COF. Our results exhibited a good Hg(II) removal performance for the sulfur loaded TP-EDDA COF. It was deduced that s⋯π interaction between sulfur atom and the alkynyl groups of the COF skeleton caused an increase in the electron density of sulfur and the electronegative sulfur atoms acted as a soft acid to accept soft-basic Hg(II). This strategy provides a convenient platform for COFs to cope with environmental issues.

Graphical abstract: Adsorption of sulfur into an alkynyl-based covalent organic framework for mercury removal

Supplementary files

Article information

Article type
Paper
Submitted
29 Oct 2022
Accepted
04 Dec 2022
First published
12 Dec 2022
This article is Open Access
Creative Commons BY license

RSC Adv., 2022,12, 35445-35451

Adsorption of sulfur into an alkynyl-based covalent organic framework for mercury removal

S. Wang, Y. Xin, H. Hu, X. Su, J. Wu, Q. Yan, J. Qian, S. Xiao and Y. Gao, RSC Adv., 2022, 12, 35445 DOI: 10.1039/D2RA06838A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements