Two-dimensional isomer differentiation using liquid chromatography-tandem mass spectrometry with in-source, droplet-based derivatization†
Abstract
Saccharides are increasingly used as biomarkers and for therapeutic purposes. Their characterization is challenging due to their low ionization efficiencies and inherent structural heterogeneity. Here, we illustrate how the coupling of online droplet-based reaction, in a form of contained electrospray (ES) ion source, with liquid chromatography (LC) tandem mass spectrometry (MS/MS) allows the comprehensive characterization of sucrose isomers. We used the reaction between phenylboronic acid and cis-diols for on-the-fly derivatization of saccharides eluting from the LC column followed by in situ MS/MS analysis, which afforded diagnostic fragment ions that enabled differentiation of species indistinguishable by chromatography or mass spectrometry alone. For example, chromatograms differing only by 2% in retention times were flagged to be different based on incompatible MS/MS fragmentation patterns. This orthogonal LC-contained-ES-MS/MS method was applied to confirm the presence of turanose, palatinose, maltulose, and maltose, which are structural isomers of sucrose, in three different honey samples. The reported workflow does not require modification to existing mass spectrometers, and the contained-ES platform itself acts both as the ion source and the reactor, all promising widespread application.