Issue 30, 2023

Recent advances in photocatalytic self-cleaning performances of TiO2-based building materials

Abstract

TiO2-based photocatalytic building materials can keep the building surface clean, and have decontamination, antibacterial effects and so on, which greatly reduces the maintenance cost and the risk of cleaning work, and these materials have great application potential in pollution and carbon reduction in the future. However, due to the wide band gap of TiO2, the low utilization of solar energy and the instability of super hydrophilicity have always been the difficulties in the field of photocatalysis. Based on the relevant research of TiO2-based photocatalytic materials in recent years, this review summarizes the modification strategies that can effectively improve the photocatalytic activity of TiO2-based photocatalytic materials. At the same time, the influence of complex environmental factors and substrate properties on the self-cleaning behavior of TiO2-based building materials was analyzed. This paper aims to provide effective guidance for the future application of TiO2-based photocatalysts in the construction field, improve people's understanding of photocatalytic building materials (PBM) and photocatalytic self-cleaning characteristics, and provide more possibilities for the extensive application of photocatalysis technology in the construction field, as well as to promote the realization of global carbon neutrality and other strategic goals of pollution and carbon reduction.

Graphical abstract: Recent advances in photocatalytic self-cleaning performances of TiO2-based building materials

Article information

Article type
Review Article
Submitted
08 Dec 2022
Accepted
17 Apr 2023
First published
11 Jul 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 20584-20597

Recent advances in photocatalytic self-cleaning performances of TiO2-based building materials

Y. Wei, Q. Wu, H. Meng, Y. Zhang and C. Cao, RSC Adv., 2023, 13, 20584 DOI: 10.1039/D2RA07839B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements