Issue 32, 2023, Issue in Progress

Thermal and bisphenol-A adsorption properties of a zinc ferrite/β-cyclodextrin polymer nanocomposite

Abstract

The present study investigated the use of a nanocomposite, produced by reinforcing nanosize zinc ferrite (ZnFe2O4) in a porous β-CD based polymeric matrix (β-CD-E-T/ZnFe2O4), for the removal of Bisphenol A (BPA) from aqueous solutions via adsorption. The thermal stability of the β-CD-based polymer and β-CD-E-T/ZnFe2O4 nanocomposite were investigated using simultaneous thermal analysis at four heating rates. Non-isothermal isoconversion methods were employed to study the thermal degradation kinetics of the β-CD based polymer before and after ZnFe2O4 nano-filling. The results showed that ZnFe2O4 nano-reinforcement increased the activation energy barrier for the thermal degradation of the β-CD-based polymeric matrix. Adsorption experiments showed that the β-CD-E-T/ZnFe2O4 nanocomposite exhibited very high BPA adsorption within 5 minutes. Isotherm, kinetics, and thermodynamic investigations revealed that the adsorption of BPA was via multilayer adsorption on a heterogeneous β-CD-E-T/ZnFe2O4 surface. The thermodynamic studies indicated that BPA adsorption on β-CD-E-T/ZnFe2O4 was spontaneous and exothermic. Overall, the β-CD-E-T/ZnFe2O4 nanocomposite showed less thermal degradation and high efficiency for removing BPA from contaminated water, indicating its potential as a promising material for wastewater treatment applications.

Graphical abstract: Thermal and bisphenol-A adsorption properties of a zinc ferrite/β-cyclodextrin polymer nanocomposite

Supplementary files

Article information

Article type
Paper
Submitted
19 May 2023
Accepted
13 Jul 2023
First published
20 Jul 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 21991-22006

Thermal and bisphenol-A adsorption properties of a zinc ferrite/β-cyclodextrin polymer nanocomposite

R. Sirach and P. N. Dave, RSC Adv., 2023, 13, 21991 DOI: 10.1039/D3RA03331G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements