Issue 41, 2023

Coordinating activation strategy enables 1,2-alkylamidation of alkynes

Abstract

The radical 1,2-difunctionalization reaction of alkynes has been evolved into a versatile approach for expeditiously increasing the complexity of the common feedstock alkyne. However, intermolecular 1,2-carboamidation with general alkyl groups is an unsolved problem. Herein, we show that a coordinating activation strategy could act as an efficient tool for enabling radical 1,2-alkylamidation of alkynes. With the employment of diacyl peroxides as both alkylating reagents and internal oxidants, a large library of β-alkylated enamides is constructed in a three-component manner from readily accessible amides and alkynes. This protocol exhibits broad substrate scope with good functional group compatibility and is amenable for late-stage functionalization of natural molecules and biologically compounds.

Graphical abstract: Coordinating activation strategy enables 1,2-alkylamidation of alkynes

Supplementary files

Article information

Article type
Edge Article
Submitted
22 Jul 2023
Accepted
27 Sep 2023
First published
30 Sep 2023
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2023,14, 11466-11473

Coordinating activation strategy enables 1,2-alkylamidation of alkynes

J. Ren, J. Xu, X. Kong, J. Li and K. Li, Chem. Sci., 2023, 14, 11466 DOI: 10.1039/D3SC03786J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements