Issue 41, 2023

Regulating the orientation of a single coordinate bond by the synergistic action of mechanical forces and electric field

Abstract

The molecular binding orientation with respect to the electrode plays a pivotal role in determining the performance of molecular devices. However, accomplishing in situ modulation of single-molecule binding orientation remains a great challenge due to the lack of suitable testing systems and characterization approaches. To this end, by employing a developed STM-BJ technique, we demonstrate that the conductance of pyridine-anchored molecular junctions decreases as the applied voltage increases, which is determined by the repeated formation of thousands of gold–molecule–gold dynamic break junctions. In contrast, the static fixed molecular junctions (the distance between two electrodes is fixed) with identical molecules exhibit a reverse tendency as the bias voltage increases. Supported by flicker noise measurements and theoretical calculations, we provide compelling evidence that the orientation of nitrogen–gold bonds (a universal coordinate bond) in the pyridine-anchored molecular junctions can be manipulated to align with the electric field by the synergistic action of the mechanical stretching force and the electric fields, whereas either stimulus alone cannot achieve the same effect. Our study provides a framework for characterizing and regulating the orientation of a single coordinate bond, offering an approach to control electron transport through single molecular junctions.

Graphical abstract: Regulating the orientation of a single coordinate bond by the synergistic action of mechanical forces and electric field

Supplementary files

Article information

Article type
Edge Article
Submitted
27 Jul 2023
Accepted
30 Sep 2023
First published
02 Oct 2023
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2023,14, 11456-11465

Regulating the orientation of a single coordinate bond by the synergistic action of mechanical forces and electric field

W. Zhang, Z. Zhao, M. Tan, A. Adijiang, S. Zhong, X. Xu, T. Zhao, E. Ramya, L. Sun, X. Zhao, Z. Fan and D. Xiang, Chem. Sci., 2023, 14, 11456 DOI: 10.1039/D3SC03892K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements