Issue 46, 2023

Defective blue titanium oxide induces high valence of NiFe-(oxy)hydroxides over heterogeneous interfaces towards high OER catalytic activity

Abstract

Nickel–iron (oxy)hydroxides (NiFeOxHy) have been validated to speed up sluggish kinetics of the oxygen evolution reaction (OER) but still lack satisfactory substrates to support them. Here, non-stoichiometric blue titanium oxide (B-TiOx) was directly derived from Ti metal by alkaline anodization and used as a substrate for electrodeposition of amorphous NiFeOxHy (NiFe/B-TiOx). The performed X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations evidenced that there is a charge transfer between B-TiOx and NiFeOxHy, which gives rise to an elevated valence at the Ni sites (average oxidation state ∼ 2.37). The synthesized NiFe/B-TiOx delivers a current density of 10 mA cm−2 and 100 mA cm−2 at an overpotential of 227 mV and 268 mV, respectively, which are better than that of pure Ti and stainless steel. It also shows outstanding activity and stability under industrial conditions of 6 M KOH. The post-OER characterization studies revealed that the surface morphology and valence states have no significant change after 24 h of operation at 500 mA cm−2, and also can effectively inhibit the leaching of Fe. We illustrate that surface modification of Ti which has high corrosion resistance and mechanical strength, to generate strong interactions with NiFeOxHy is a simple and effective strategy to improve the OER activity and stability of non-precious metal electrodes.

Graphical abstract: Defective blue titanium oxide induces high valence of NiFe-(oxy)hydroxides over heterogeneous interfaces towards high OER catalytic activity

Supplementary files

Article information

Article type
Edge Article
Submitted
14 Sep 2023
Accepted
05 Nov 2023
First published
13 Nov 2023
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2023,14, 13453-13462

Defective blue titanium oxide induces high valence of NiFe-(oxy)hydroxides over heterogeneous interfaces towards high OER catalytic activity

T. Zhou, Y. Yang, Y. Jing, Y. Hu, F. Yang, W. Sun and L. He, Chem. Sci., 2023, 14, 13453 DOI: 10.1039/D3SC04858F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements