Issue 48, 2023

Balanced chemical reactivity, antimicrobial properties and biocompatibility of decellularized dermal matrices for wound healing

Abstract

The prevention of bacterial infection and prompt wound repair are crucial considerations when local skin tissue is compromised by burns, cuts, or similar injuries. Porcine acellular dermal matrix (pADM) is a commonly employed biological material in wound repair due to its inherent natural properties. Nonetheless, the pADM's primary constituent, collagen fibers, lacks antimicrobial properties and is vulnerable to bacterial infection when used in the treatment of incompletely debrided wounds. Meanwhile, conventional antimicrobial agents primarily consist of chemical compounds that exhibit inadequate biocompatibility and biological hazards. This research endeavors to create an antimicrobial collagen scaffold dressing utilizing the Schiff base reaction through the incorporation of oxidized chitosan diquaternary (ODHTCC) salt into the pADM. Compared with the unmodified pADM, ODHTCC-pADM (OD-pA) still retained the three-stranded helical structure of natural collagen. At an ODHTCC cross-linker concentration of 4%, the thermal denaturation temperature of OD-pA was 85 °C. According to the enzymatic degradation resistance test in vitro, the degradation resistance of OD-pA to type I collagenase was significantly improved compared with that of the uncross-linked pADM. In addition, OD-pA exhibited good antibacterial properties, with inhibition rates of 95.6% and 99.9% for E. coli and Staphylococcus aureus, respectively, and a cytotoxicity level 1, meeting the in vitro requirements of national biomedical materials. In vivo experiments showed that the OD-pA scaffold could better promote wound healing and more effectively promote the positive expression of bFGF, PDGF and VEGF. In conclusion, OD-pA has struck a balance between antibacterial properties, chemical reaction properties and biocompatibility, ultimately achieving controllability, and has broad application prospects in the field of antibacterial biomedical materials.

Graphical abstract: Balanced chemical reactivity, antimicrobial properties and biocompatibility of decellularized dermal matrices for wound healing

Article information

Article type
Paper
Submitted
18 Aug 2023
Accepted
02 Nov 2023
First published
21 Nov 2023

Soft Matter, 2023,19, 9478-9488

Balanced chemical reactivity, antimicrobial properties and biocompatibility of decellularized dermal matrices for wound healing

X. Huang, Z. Ding, R. Feng, X. Zheng, N. Yang, Y. Chen and N. Dan, Soft Matter, 2023, 19, 9478 DOI: 10.1039/D3SM01092A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements