Issue 48, 2023

Amphiphilic monomers bridge hydrophobic polymers and water

Abstract

Water dissolves a hydrophilic polymer, but not a hydrophobic polymer. Many monomers of hydrophilic polymers, however, are amphiphilic, with a hydrophobic vinyl group for radical polymerization, as well as a hydrophilic group. Consequently, such an amphiphilic monomer may form solutions with both water and hydrophobic polymers. Ternary mixtures of amphiphilic monomer, hydrophobic polymer, and water have recently been used as precursors for interpenetrating polymer networks of hydrophilic polymers and hydrophobic polymers of unusual properties. However, the phase behavior of the ternary mixtures of amphiphilic monomer, hydrophobic polymer, and water themselves has not been studied. Here we mix the amphiphilic monomer acrylic acid, the hydrophobic polymer poly(methyl methacrylate), and water. In the mixture, the hydrophobic polymer can form various morphologies, including solution, micelle, gel, and polymer glass. We interpret these findings by invoking that the hydrophobic and hydrophilic groups of the amphiphilic monomer enable it to function as a bridge. That is, the hydrophobic functional group binds with the hydrophobic polymer, and the hydrophilic functional group binds with water. This picture leads to a simple modification to the Flory–Huggins theory, which agrees well with our experimental data. Amphiphilic monomers offer a rich area for further study for scientific insight, as well as for expanding opportunities to develop materials of self-assembled structures with unusual properties.

Graphical abstract: Amphiphilic monomers bridge hydrophobic polymers and water

Supplementary files

Article information

Article type
Paper
Submitted
27 Aug 2023
Accepted
22 Nov 2023
First published
22 Nov 2023

Soft Matter, 2023,19, 9489-9495

Author version available

Amphiphilic monomers bridge hydrophobic polymers and water

G. L. A. Kusters, G. Zhang, Z. Chen and Z. Suo, Soft Matter, 2023, 19, 9489 DOI: 10.1039/D3SM01129A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements