A novel SERS-lateral flow assay (LFA) tray for monitoring of miR-155-5p during pyroptosis in breast cancer cells
Abstract
In the study, a novel surface-enhanced Raman scattering (SERS)-lateral flow assay (LFA) tray for the real-time detection of pyroptosis-associated miR-155-5p in breast cancer cells was established and validated. The SERS probe modified with monoclonal antibodies and functionalized HP1@5-FAM was first synthesized. When miR-155-5p was present, HP1@5-FAM on the SERS probe specifically recognized target miRNAs and hybridized with them, resulting in HP2 on the T line only capturing some SERS probes that were not bound to miR-155-5p. The T line appeared as a light orange band or there was no color change, and the corresponding Raman detection result showed a weak or insignificant Raman signal. The SERS probe showed high selectivity, satisfactory stability, and excellent reproducibility, and the limit of detection (LOD) for miR-155-5p was 7.26 aM. Finally, the proposed SERS-LFA tray was applied to detect miR-155-5p in MBA-MD-468 cells that underwent varying degrees of pyroptosis, and the detection results of SERS were consistent with those of the conventional real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay. The study demonstrated that the SERS-LFA tray was a convenient and ultrasensitive method for miR-155-5p real-time detection, which could provide more detailed information for pyroptosis and be of potential value in guiding the treatment of breast cancer.