Visible-light-driven photoelectrochemical sensor based on conjugated microporous polymer-grafted graphene for o-aminophenol detection†
Abstract
The pollutant o-aminophenol (o-AP) presents considerable risk to environmental safety, and its detection is therefore critical. Although various optical and electrochemical methods have been proposed for the detection of o-AP, there are a limited number of detection methods based on photoelectrochemical (PEC) sensors. In this study, a sensitive visible-light-driven PEC sensor was developed for o-AP detection in water. A conjugated microporous polymer (CMP)-coated graphene heterostructure (CMP-rGO) was synthesized and used to develop a PEC sensor. Under optimal conditions, the proposed sensor exhibited a high sensitivity of 0.03 μM with a wide linear range of 0.0034–37.6 μM. The PEC sensor also displayed acceptable repeatability and reproducibility, good long-term stability, and excellent recovery (98–102%). In addition, the binding patterns of CMP to o-AP and o-AP analog molecules were analyzed by molecular docking. Therefore, this study provides a new and feasible PEC sensor-based detection scheme for o-AP detection.