Issue 22, 2024

Development of ZmT-PEG hydrogels through Michael addition reaction and protein self-assembly for 3D cell culture

Abstract

Bioactive protein-derived hydrogels are highly attractive three-dimensional (3D) platforms for in vitro cell culture. However, most protein and polypeptide hydrogels are extracted from animal tissues or chemically synthesized, with many drawbacks. Herein, we fabricated an optically transparent ZmT-PEG hydrogel via a facile one-pot strategy. The modified Z1Z2 (Zm) was obtained by introducing cysteine at the C-terminus of Z1Z2 (ZC) and inserting the RGD sequence into the low conserved (CD) loop (ZR). A Michael addition reaction occurred between Zm and 4-arm PEG-MAL, and Zm-PEG self-assembled with truncated Telethonin (Tm) to form the hydrogel. We expressed the Zm and Tm proteins in Escherichia coli. CD spectroscopy showed that genetic modification and the reaction with 4-arm PEG-MAL had no effect on the secondary structure of the Zm protein. When Zm was at 10 wt% and the ratio of Zm : 4-arm PEG-MAL : Tm was 2 : 1 : 1, the gelation time was 6–8 hours. SEM results revealed that the hydrogels had an interconnected porous structure with pore diameters of 20–150 μm. Cell experiments showed that MCF-7 cells could grow and proliferate significantly on the hydrogel after 7 days of culture. Immunofluorescence results suggested that MCF-7 cells on the ZmT hydrogel had a spherical structure similar to that on Matrigel. These results indicate that the ZmT-PEG hydrogel can be used for cell culture in vitro and is promising for large-scale production.

Graphical abstract: Development of ZmT-PEG hydrogels through Michael addition reaction and protein self-assembly for 3D cell culture

Article information

Article type
Paper
Submitted
08 May 2024
Accepted
03 Oct 2024
First published
09 Oct 2024

Biomater. Sci., 2024,12, 5803-5811

Development of ZmT-PEG hydrogels through Michael addition reaction and protein self-assembly for 3D cell culture

Y. Fu, Y. Zhou, Y. Chen, Z. Zhang, C. Zhang, C. Deng, X. Tong, W. Zheng, M. Wang and X. Ma, Biomater. Sci., 2024, 12, 5803 DOI: 10.1039/D4BM00643G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements