Issue 44, 2024

Structural insights into ketanserin salts with aliphatic acids and their physiochemical properties

Abstract

Ketanserin (KTS), a BCS class II drug, is used as an alpha-blocking serotonin antagonist. The drug decreases blood pressure by lowering peripheral vascular resistance. In order to improve its poor aqueous solubility, multicomponent solid forms of KTS with aliphatic acidic coformers such as maleic acid (MA), fumaric acid (FA), adipic acid (AA), and sulfamic acid (SA) were synthesized via wet granulation. The salts were characterized by XRD, DSC, TGA and single crystal XRD. Proton transfer from acidic coformers to the most basic piperidine nitrogen atom of KTS confirmed salt formation. KTS·FA and KTS·MA are anhydrous salts, while KTS·SA and KTS·AA are hydrates. KTS·SA crystallized as both monohydrate (MH) and dihydrate (DH), with the dihydrate being the more thermodynamically stable phase. The KTS hydrogen-bonded amide dimer is replaced by piperidinium⋯carboxylate/sulfonate ionic heterosynthons in the salts. Hirshfeld surface analysis quantified the non-covalent interactions governing the salt assembly. Solubility studies in 0.1 N HCl (pH 1.2) and phosphate buffer (pH 6.8) revealed improved solubility for all salts compared to KTS, with the order being KTS·SA (DH) > KTS·FA > KTS·MA > KTS·AA > KTS in phosphate buffer. Slight solubility improvement was observed in acidic medium (pH 1.2). KTS salts maintained their integrity in phosphate buffer but transformed into their HCl salts under acidic conditions. The enhanced solubility of KTS·SA (DH) is attributed to higher ΔpKa, polar contacts, extended conformation, and ionic heterosynthons. These new solid forms of KTS present an opportunity to overcome solubility-related bioavailability challenges.

Graphical abstract: Structural insights into ketanserin salts with aliphatic acids and their physiochemical properties

Supplementary files

Article information

Article type
Communication
Submitted
24 Jul 2024
Accepted
15 Oct 2024
First published
16 Oct 2024

CrystEngComm, 2024,26, 6260-6268

Structural insights into ketanserin salts with aliphatic acids and their physiochemical properties

G. Kenguva, S. Rekha Rout, T. R. Shaikh, D. Baidya, N. Shelke, P. Sanphui and R. Dandela, CrystEngComm, 2024, 26, 6260 DOI: 10.1039/D4CE00738G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements