Issue 10, 2024

Application of high-resolution laser multi collector ICP-MS U–Pb dating to columbite-group minerals with compositional zonation: reassessment of matrix effects among columbite-group minerals

Abstract

Columbite-group minerals (CGMs) have been widely used in U–Pb geochronological analysis of granite and pegmatite Nb–Ta deposits due to their high U and low common Pb characteristics. Due to the equivalent replacement of elements in the mineral structure and complex geological processes, CGMs often exhibit strong, local, and complex chemical zoning. Multiple types of composition zonation of CGMs can reflect the process of niobium–tantalum mineralization. However, the laser resolution of the currently established U–Pb methods cannot be used for in situ dating of CGMs with zonation with a width less than 20 μm. Additionally, there is no consensus on whether significant matrix effects could be observed among CGMs when nonmatrix-matched calibrations were performed. These limitations hinder the advancing understanding of niobium–tantalum differentiation and enrichment mechanisms in the formation of CGMs. In this study, we utilized the widely used geochronological reference material Coltan139 as the primary standard, established a high-resolution LA-MC-ICP-MS U–Pb analysis method using homogeneous CGM samples from the Dakalasu and Jingerquan deposits in the Altai and East Tianshan orogenic belts, Xinjiang, China. This method has a resolution of up to 10 μm. We applied this method to sample JEQ-2, which was collected from the Jingerquan Li–Be–Nb–Ta deposit and exhibited a variety of compositional zonations. Through a comparison of the ages calibrated using the ferrocolumbite Coltan139 and ferrotapiolite CT1 standards, we propose that the major matrix effect for U–Pb dating of CGMs correlates with the Ta/(Nb + Ta) ratios under small beam spot conditions. The matrix effect is likely to increase with the increase in Ta/(Nb + Ta) differences between reference materials and the samples. Furthermore, the U–Pb age results of sample JEQ-2 confirm that CGM grains with normal and oscillatory zonings are magmatic contemporaneous products. A new in-house standard material sample DKLS-27 was also reported with a reliable and stable U–Pb age for CGM U–Pb dating analysis. The 206Pb/238U weighted mean age obtained from long-term monitoring is 250.2 ± 0.3 Ma (2 s, MSWD = 0.52, n = 141). This study offers a new analysis method for the fine geochronology of rare metal deposits.

Graphical abstract: Application of high-resolution laser multi collector ICP-MS U–Pb dating to columbite-group minerals with compositional zonation: reassessment of matrix effects among columbite-group minerals

Supplementary files

Article information

Article type
Paper
Submitted
30 May 2024
Accepted
23 Jul 2024
First published
25 Jul 2024

J. Anal. At. Spectrom., 2024,39, 2421-2432

Application of high-resolution laser multi collector ICP-MS U–Pb dating to columbite-group minerals with compositional zonation: reassessment of matrix effects among columbite-group minerals

S. Yang, L. Zhang, R. Wang, D. Zhu, J. Xie, Q. Wang and W. Xu, J. Anal. At. Spectrom., 2024, 39, 2421 DOI: 10.1039/D4JA00201F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements