Dual access to the fluid networks of colloid-stabilized bicontinuous emulsions through uninterrupted connections†
Abstract
Large surface areas are important for enhancing mass and energy transfer in biological and technological processes. Bicontinuous interfacially jammed emulsion gels (bijels) increase the surface area between two fluids by intertwining them into particle stabilized networks. To facilitate efficient mass and energy exchange via the bijels’ high surface area, the fluid networks need to be connected to their respective bulk phases. Here, we generate bijels between two bulk fluids and investigate the connections the bijel makes. We analyze these connections by investigating the colloidal stability, interfacial rheology and mass transfer dynamics during bijel formation. To this end, we employ confocal and electron microscopy, as well as dynamic light scattering, pendant drop analysis, electrophoretic mobility measurements and diffusion simulations. We find that the connections the bijel makes to the bulk fluid can be disrupted by severe colloidal aggregation and interruptions of the bicontinuous fluid network. However, the addition of alcohol to the bulk fluid moderates aggregation and allows undisturbed fluid network formation, facilitating open connections between bijel and bulk fluid. The unprecedented control of bijel pore connections from this research will be crucial for the application of bijels as separation membranes, electrochemical energy storage materials and chemical reactors.