Issue 10, 2024

Localized charge-induced ORR/OER activity in doped fullerenes for Li–air battery applications

Abstract

Non-aqueous Li–air batteries have garnered significant interest in recent years. The key challenge lies in the development of efficient catalysts to overcome the sluggish kinetics associated with the oxygen reduction reaction (ORR) during discharge and the oxygen evolution reaction (OER) during charging at the cathode. In this work, we conducted a comprehensive study on B/N-doped and BN co-doped fullerenes using first-principles analysis. Our results show significant changes in the geometries, electronic properties, and catalytic behaviors of doped and co-doped fullerenes. The coexistence of boron and nitrogen boosts the formation energy, enhancing stability compared to pristine and single-doped structures. C179B exhibits minimal overpotentials (0.98 V), implying superior catalyst performance for ORR and OER in LABs and significantly better performance than Pt (111) (3.48 V) and standard graphene (3.51 V). The electron-deficient nature of the B atom makes it provide its vacant 2pz orbital for conjugation with the p-electrons of nearby carbon atoms. Consequently, boron serves as a highly active site due to the localization of positive charge, which improves the adsorption of intermediates through oxygen atoms. Moreover, the higher activity of B-doped systems than N-doped systems in lithium-rich environments is opposite to the observed trend in the reported PEM fuel cells. This work introduces doped and co-doped fullerenes as LAB catalysts, offering insights into their tunable ORR/OER activity via doping with various heteroatoms and fullerene size modulation.

Graphical abstract: Localized charge-induced ORR/OER activity in doped fullerenes for Li–air battery applications

Supplementary files

Article information

Article type
Paper
Submitted
20 Oct 2023
Accepted
02 Feb 2024
First published
02 Feb 2024

Nanoscale, 2024,16, 5257-5266

Localized charge-induced ORR/OER activity in doped fullerenes for Li–air battery applications

N. Bharadwaj and B. Pathak, Nanoscale, 2024, 16, 5257 DOI: 10.1039/D3NR05309A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements