Engineering a dual-loop molecular circuit with buffering capability to solve molecular information tasks†
Abstract
Molecular circuits, as an effective strategy for implementing artificial biochemical networks, have been widely constructed to process molecular-level information tasks both in vivo and in vitro. However, the complex and diverse structures of molecular devices, along with inflexible signal output methods, pose significant challenges for molecular circuits to handle complex molecular information tasks. In response to the growing field of molecular circuits, we design an exonuclease-driven fan-out molecular device (FMD) with a programmable cascade approach capable of receiving uniform signal types and transmitting multifunctional signals. Combined with the buffering reaction proposed here, the approach expands the dynamic properties of biochemical networks. Unlike the conventional delay strategy, the buffering process not only withstands transient changes in transmission signals, but also delays the transmission of lossless signals. Furthermore, we construct a dual-loop molecular circuit with adjustable buffering modes, thereby enabling signal amplification, time delay, and a differentiated output. Finally, we develop a method to obtain the colorimetric output of dual pulse signals driven by a dual-loop molecular circuit with buffering and hence precisely classify multiple signals. This work promises programmable and multifunctional molecular circuits in nanomachines, molecular computing, and biomedical applications.