Issue 48, 2024, Issue in Progress

Design, synthesis, and evaluation of novel thiadiazole derivatives as potent VEGFR-2 inhibitors: a comprehensive in vitro and in silico study

Abstract

Objective: This study aims to investigate the potential of designed 2,3-dihydro-1,3,4-thiadiazole derivatives as anti-proliferative agents targeting VEGFR-2, utilizing a multidimensional approach combining in vitro and in silico analyses. Methods: The synthesized derivatives were evaluated for their inhibitory effects on MCF-7 and HepG2 cancer cell lines. Additionally, VEGFR-2 inhibition was assessed. Further investigations into the cellular mechanisms were conducted to elucidate the effects of 20b (N-(4-((E)-1-(((Z)-5-Acetyl-3-(p-tolyl)-1,3,4-thiadiazol-2(3H)-ylidene)hydrazono) ethyl) phenyl) benzamide) on cell cycle arrest and apoptosis induction. Furthermore, computational investigations, including molecular docking, MD simulations, DFT calculations, MM-GBSA, PCAT, and ADMET predictions were conducted. Results: Compound 20b emerged as a standout candidate with significantly lower IC50 values of 0.05 μM and 0.14 μM for MCF-7 and HepG2 cell lines, respectively. It exhibited notable VEGFR-2 inhibition (0.024 μM), surpassing the efficacy of sorafenib (0.041 μM). Compound 20b demonstrated cancer-specific targeting potential with a high selectivity index in normal WI-38 cells (IC50 0.19 μM). Mechanistic studies revealed its ability to arrest the cell cycle of MCF-7 cells and induce apoptosis (total apoptosis 34.47%, early apoptosis 18.48%, and late apoptosis 15.99%), supported by upregulated caspase-8 (3.42-fold) and caspase-9 (5.44-fold) expression. Additionally, 20b arrested the cell cycle of MCF-7 cells at the %G0-G1 phase. Computational investigations provided insights into its molecular interactions with VEGFR-2, contributing to the rational design and understanding of its pharmacological profile. Conclusions: Compound 20b presents as a promising anti-proliferative agent targeting VEGFR-2. Also, this comprehensive investigation underscores the potential of 2,3-dihydro-1,3,4-thiadiazole derivatives as promising candidates for further development in anti-cancer research.

Graphical abstract: Design, synthesis, and evaluation of novel thiadiazole derivatives as potent VEGFR-2 inhibitors: a comprehensive in vitro and in silico study

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
06 Jun 2024
Accepted
25 Oct 2024
First published
06 Nov 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 35505-35519

Design, synthesis, and evaluation of novel thiadiazole derivatives as potent VEGFR-2 inhibitors: a comprehensive in vitro and in silico study

I. H. Eissa, W. E. Elgammal, H. A. Mahdy, S. Zara, S. Carradori, D. Z. Husein, M. N. Alharthi, I. M. Ibrahim, E. B. Elkaeed, H. Elkady and A. M. Metwaly, RSC Adv., 2024, 14, 35505 DOI: 10.1039/D4RA04158E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements