Observation of super-Nernstian proton-coupled electron transfer and elucidation of nature of charge carriers in a multiredox conjugated polymer†
Abstract
Nernstian proton-coupled electron transfer (PCET) is a fundamental process central to many physical and biological systems, such as electrocatalysis, enzyme operation, DNA biosynthesis, pH-/bio-sensors, and electrochemical energy storage devices. We report herein the discovery of super-Nernstian PCET behavior with two protons per electron transferred in the electrochemical doping of a redox conjugated polymer, phenazine-substituted ladder poly(benzimidazobenzophenanthroline) (BBL-P), in aqueous electrolyte. We show that the super-Nernstian response originates from existence of multiredox centers that have a gradient of pKa on the conjugated polymer. Our use of various pH-dependent in operando techniques to probe the nature of charge carriers in n-doped BBL-P found that polarons are the charge carriers at low to intermediate levels of doping (0.1–1.0 electron per repeat unit (eru)) whereas at higher doing levels (1.3 eru), polarons, polaron pairs, and bipolarons co-exist, which evolve into strongly coupled polaron pairs at the highest doping levels (>1.5 eru). We show that PCET-assisted n-doping of BBL-P results in very high redox capacity (>1200 F cm−3) in acidic electrolyte. Our results provide important new insights into PCET in organic materials and the nature of charge carriers in n-doped conjugated polymers while having implications for various electrochemical devices.