Issue 18, 2024

Iron promoted end-on dinitrogen-bridging in heterobimetallic complexes of uranium and lanthanides

Abstract

End-on binding of dinitrogen to low valent metal centres is common in transition metal chemistry but remains extremely rare in f-elements chemistry. In particular, heterobimetallic end-on N2 bridged complexes of lanthanides are unprecedented despite their potential relevance in catalytic reduction of dinitrogen. Here we report the synthesis and characterization of a series of N2 bridged heterobimetallic complexes of U(III), Ln(III) and Ln(II) which were prepared by reacting the Fe dinitrogen complex [Fe(depe)2(N2)] (depe = 1,2-bis(diethylphosphino)-ethane), complex A with [MIII{N(SiMe3)2}3] (M = U, Ce, Sm, Dy, Tm) and [LnII{N(SiMe3)2}2], (Ln = Sm, Yb). Despite the lack of reactivity of the U(III), Ln(III) and Ln(II) amide complexes with dinitrogen, the end-on dinitrogen bridged heterobimetallic complexes [{Fe(depe)2}(μ-η11-N2)(M{N(SiMe3)2}3)], 1-M (M = U(III), Ce(III), Sm(III), Dy(III) and Tm(III)), [{Fe(depe)2}(μ-η11-N2)(Ln{N(SiMe3)2}2)], 1*-Ln (Ln = Sm(II), Yb(II)) and [{Fe(depe)2(μ-η11-N2)}2{SmII{N(SiMe3)2}2}], 3 could be prepared. The synthetic method used here allowed to isolate unprecedented end-on bridging N2 complexes of divalent lanthanides which provide relevant structural models for the species involved in the catalytic reduction of dinitrogen by Fe/Sm(II) systems. Computational studies showed an essentially electrostatic interaction of the end-on bridging N2 with both Ln(III) and Ln(II) complexes with the degree of N2 activation correlating with their Lewis acidity. In contrast, a back-bonding covalent contribution to the U(III)–N2Fe bond was identified by computational studies. Computational studies also suggest that end-on binding of N2 to U(III) and Ln(II) complexes is favoured for the iron-bound N2 compared to free N2 due to the higher N2 polarization.

Graphical abstract: Iron promoted end-on dinitrogen-bridging in heterobimetallic complexes of uranium and lanthanides

Supplementary files

Article information

Article type
Edge Article
Submitted
14 Feb 2024
Accepted
02 Apr 2024
First published
02 Apr 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY license

Chem. Sci., 2024,15, 6842-6852

Iron promoted end-on dinitrogen-bridging in heterobimetallic complexes of uranium and lanthanides

N. Jori, J. J. Moreno, R. A. K. Shivaraam, T. Rajeshkumar, R. Scopelliti, L. Maron, J. Campos and M. Mazzanti, Chem. Sci., 2024, 15, 6842 DOI: 10.1039/D4SC01050G

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements