Issue 1, 2025

Tracing nitrate contamination sources and dynamics in an unconfined alluvial aquifer system (Velika Gorica well field, Croatia)

Abstract

Nitrate ions (NO3) are one of the most common contaminants in the groundwater of the Zagreb alluvial aquifer, which hosts strategic groundwater reserves of the Republic of Croatia and supplies drinking water to one million inhabitants of the capital city. To better understand the origin and the dynamics of NO3 in the unsaturated and saturated zones, the stable isotopes of nitrogen (δ15N) and oxygen (δ18O) in dissolved nitrate, combined with physico-chemical, hydrogeochemical and water stable isotope data, were used in the current work, together with statistical tools and mixing models. The study involved monthly sampling of groundwater, surface water, precipitation and soil water samples. Additionally, the isotopic composition of total nitrogen (δ15Nbulk) was determined in solid samples representing the local nitrate sources. The combination of a nitrous oxide isotopic analyzer and the titanium(III) reduction method provides reliable measurements of δ15NNO3 and δ18ONO3, with optimal stability achieved under specific conditions. Nitrate in the study area predominantly originates from organic sources, with nitrification as the main biogeochemical process, while denitrification was identified at sampling sites under specific anaerobic conditions. Although statistical analysis can be a valuable tool, it should be applied with caution if NO3 originates from multiple sources. The isotopic composition of water showed that groundwater is predominantly recharged by the Sava River but its contribution varied spatially. The results also show the existence of a different recharge source in the southern part of the aquifer. Our findings highlighted the importance of employing a diverse range of analytical methods to obtain reliable and comprehensive understanding of nitrate contamination. By integrating multi-method approaches, stakeholders can better understand the complexities of groundwater contamination and implement more targeted measures to safeguard the water supplies for future generations.

Graphical abstract: Tracing nitrate contamination sources and dynamics in an unconfined alluvial aquifer system (Velika Gorica well field, Croatia)

Supplementary files

Article information

Article type
Paper
Submitted
04 Sep 2024
Accepted
01 Dec 2024
First published
11 Dec 2024
This article is Open Access
Creative Commons BY-NC license

Environ. Sci.: Processes Impacts, 2025,27, 154-171

Tracing nitrate contamination sources and dynamics in an unconfined alluvial aquifer system (Velika Gorica well field, Croatia)

P. Buškulić, Z. Kovač, I. Matiatos and J. Parlov, Environ. Sci.: Processes Impacts, 2025, 27, 154 DOI: 10.1039/D4EM00527A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements