Issue 1, 2025

Experimental study on the motion characteristics and critical hydraulic parameters of microplastics in a freshwater environment

Abstract

The migration behavior of microplastics in water is affected by many factors; in particular, the migration mechanism of microplastics in the terrestrial freshwater environment is more complicated than that in the marine environment. In order to understand the migration behavior of microplastics in the freshwater environment, the hydraulic parameter thresholds of different types of microplastics in water were identified based on hydraulic experiments and force analysis methods. The results show that the motion state of microplastics is affected by their own internal factors and external environmental factors, and the flow rate is the key external factor affecting the change of their motion state. In the vertical direction, the higher the density, the rougher the environment, and the closer the shape to the flake, the greater the critical starting flow velocity and the critical resuspension flow velocity. The settling velocities, critical initiation velocities, and critical resuspension velocities of microplastics range from 0.05 to 0.17 m s−1, 0.03 to 0.44 m s−1, and 0.251 to 0.83 m s−1, respectively. Horizontally, the bottom rolling velocities of microplastics vary significantly. These velocities are positively correlated with water flow velocity but are inversely proportional to the density of the microplastics and the roughness of the substrate. By combining experimental data, mathematical expressions for the critical hydraulic parameters of microplastics were derived, showing improved accuracy compared to traditional methods. This paper explores the trajectory of different types of microplastics after entering the water body and analyzes their migration mechanism in the river. The research results have certain theoretical guiding significance for revealing the migration law of microplastics in the freshwater environment.

Graphical abstract: Experimental study on the motion characteristics and critical hydraulic parameters of microplastics in a freshwater environment

Supplementary files

Article information

Article type
Paper
Submitted
24 Sep 2024
Accepted
28 Nov 2024
First published
13 Dec 2024

Environ. Sci.: Processes Impacts, 2025,27, 172-187

Experimental study on the motion characteristics and critical hydraulic parameters of microplastics in a freshwater environment

M. Dou, Z. Wang, Y. Li, B. Sun, Y. Zhang, Y. Zhou and R. Jia, Environ. Sci.: Processes Impacts, 2025, 27, 172 DOI: 10.1039/D4EM00574K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements