Issue 6, 2025, Issue in Progress

Discovery of novel acetylcholinesterase inhibitors through AI-powered structure prediction and high-performance computing-enhanced virtual screening

Abstract

Virtual screening (VS) methodologies have become key in the drug discovery process but are also applicable to other fields including catalysis, material design, and, more recently, insecticide solutions. Indeed, the search for effective pest control agents is a critical industrial objective, driven by the need to meet stringent regulations and address public health concerns. Cockroaches, known vectors of numerous diseases, represent a major challenge due to the toxicity of existing control measures to humans. In this article, we leverage an Artificial Intelligence (AI)-based screening of the Drug Bank (DB) database to identify novel acetylcholinesterase (AChE) inhibitors, a previously uncharacterized target in the American cockroach (Periplaneta americana). Our AI-based VS pipeline starts with the deep-learning-based AlphaFold to predict the previously unknown 3D structure of AChE based on its amino acid sequence. This first step enables the subsequent ligand–receptor VS of potential inhibitors, the development of which is performed using a consensus VS protocol based on two different tools: Glide, an industry-leading solution, and METADOCK 2, a metaheuristic-based tool that takes advantage of GPU acceleration. The proposed VS pipeline is further refined through rescoring to pinpoint the most promising biocide compounds against cockroaches. We show the search space explored by different metaheuristics generated by METADOCK 2 and how this search is more exhaustive, but complementary, than the one offered by Glide. Finally, we applied Molecular Mechanics Generalized Born Surface Area (MMGBSA) to list the most promising compounds to inhibit the AChE enzyme.

Graphical abstract: Discovery of novel acetylcholinesterase inhibitors through AI-powered structure prediction and high-performance computing-enhanced virtual screening

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
08 Nov 2024
Accepted
29 Jan 2025
First published
07 Feb 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 4262-4273

Discovery of novel acetylcholinesterase inhibitors through AI-powered structure prediction and high-performance computing-enhanced virtual screening

B. Chafer-Dolz, J. M. Cecilia, B. Imbernón, E. Núñez-Delicado, V. Casaña-Giner and J. P. Cerón-Carrasco, RSC Adv., 2025, 15, 4262 DOI: 10.1039/D4RA07951E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements