Issue 2, 2025

Effects of droplet deposition on aerosol capture efficiency of bipolarly charged fibers

Abstract

Aerosol filters composed of electrostatically charged bipolar fibers are referred to as electret filters. A novel computational model is developed in this work to study the impact of droplet deposition on aerosol capture efficiency of electret fibers. The electret fibers were assumed to have a dipole orientation that was either parallel or perpendicular to the airflow direction. The simulations were conducted using the ANSYS CFD code after it was enhanced with a series of in-house subroutines. Our simulations revealed that droplet deposition on electret fibers decreases their ability to capture airborne particles. More specifically, the simulations were devised to isolate droplet's physical and electrical properties (e.g., surface tension, electrical conductivity…) and quantify their impact on fiber capture efficiency. It was found, in particular, that droplet's electrical conductivity and permittivity have the most adverse impact on the performance of an electret fiber. This is perhaps because higher droplet conductivity results in severe fiber charge neutralization, and higher droplet permittivity leads to a stronger fiber charge shielding. In contrast, fiber wettability was found to have a negligible impact on fiber efficiency. The work presented in this paper offers valuable insights into the complex nature of electret filters used in different industrial and environmental applications.

Graphical abstract: Effects of droplet deposition on aerosol capture efficiency of bipolarly charged fibers

Supplementary files

Article information

Article type
Paper
Submitted
17 Sep 2024
Accepted
28 Nov 2024
First published
28 Nov 2024
This article is Open Access
Creative Commons BY-NC license

Soft Matter, 2025,21, 198-208

Effects of droplet deposition on aerosol capture efficiency of bipolarly charged fibers

A. Kumar, S. Gautam, N. Bhatta, H. V. Tafreshi and B. Pourdeyhimi, Soft Matter, 2025, 21, 198 DOI: 10.1039/D4SM01105H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements