Issue 1, 2025

Raman spectroscopy study of K-birnessite single crystals

Abstract

Raman studies of manganese dioxide (MnO2), a crucial material for sustainable and innovative solutions in energy storage and environmental remediation, have predominantly been conducted on fine-grained aggregates, leaving the identification of Raman peaks open to debate. To address this, in this study the Raman spectra of potassium (K)-birnessite single crystals with varying crystal thickness, temperature, and polarization configuration are measured. An acoustic phonon mode of birnessite is identified, which is found to be sensitive to both crystal thickness and interlayer spacing, with its frequency increasing by approximately 35% when the c-axis lattice parameter is reduced from 0.70 to 0.65 nm by the removal of interlayer water. In contrast, the dependence of the optical phonon modes on crystal thickness and interlayer spacing is not particularly noticeable. It is demonstrated that the characteristic Raman peak of K-birnessite, observed at approximately 559 cm−1, originates from a two-dimensional hexagonal configuration of cations and water molecules within the interlayer space, rather than from the MnO6 octahedra. Additionally, the doubly degenerate vibrational mode of MnO6 octahedra, corresponding to the motion of oxygen atoms in the basal plane, splits into two, confirming that the MnO6 octahedra are distorted by the Jahn–Teller effect.

Graphical abstract: Raman spectroscopy study of K-birnessite single crystals

Associated articles

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
29 Aug 2024
Accepted
19 Nov 2024
First published
20 Nov 2024

J. Mater. Chem. A, 2025,13, 617-626

Raman spectroscopy study of K-birnessite single crystals

D. H. Ha, G. Noh, H. Kim, D. H. Kim, J. Kim, S. Jung, C. Hwang, H. Y. Lee, Y. J. Yun, J. Y. Kwak, K. Kang and S. N. Yi, J. Mater. Chem. A, 2025, 13, 617 DOI: 10.1039/D4TA06118G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements