Issue 2, 2016

Molecular origin of high free energy barriers for alkali metal ion transfer through ionic liquid–graphene electrode interfaces

Abstract

In this work we study mechanisms of solvent-mediated ion interactions with charged surfaces in ionic liquids by molecular dynamics simulations, in an attempt to reveal the main trends that determine ion–electrode interactions in ionic liquids. We compare the interfacial behaviour of Li+ and K+ at a charged graphene sheet in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, and its mixtures with lithium and potassium tetrafluoroborate salts. Our results show that there are dense interfacial solvation structures in these electrolytes that lead to the formation of high free energy barriers for these alkali metal cations between the bulk and direct contact with the negatively charged surface. We show that the stronger solvation of Li+ in the ionic liquid leads to the formation of significantly higher interfacial free energy barriers for Li+ than for K+. The high free energy barriers observed in our simulations can explain the generally high interfacial resistance in electrochemical storage devices that use ionic liquid-based electrolytes. Overcoming these barriers is the rate-limiting step in the interfacial transport of alkali metal ions and, hence, appears to be a major drawback for a generalised application of ionic liquids in electrochemistry. Some plausible strategies for future theoretical and experimental work for tuning them are suggested.

Graphical abstract: Molecular origin of high free energy barriers for alkali metal ion transfer through ionic liquid–graphene electrode interfaces

Article information

Article type
Paper
Submitted
05 Oct 2015
Accepted
20 Nov 2015
First published
26 Nov 2015

Phys. Chem. Chem. Phys., 2016,18, 1302-1310

Author version available

Molecular origin of high free energy barriers for alkali metal ion transfer through ionic liquid–graphene electrode interfaces

V. Ivaništšev, T. Méndez-Morales, R. M. Lynden-Bell, O. Cabeza, L. J. Gallego, L. M. Varela and M. V. Fedorov, Phys. Chem. Chem. Phys., 2016, 18, 1302 DOI: 10.1039/C5CP05973A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements