DOI:
10.1039/C5RA24127H
(Communication)
RSC Adv., 2016,
6, 13820-13828
DABCO-catalyzed consecutive one pot four-component protocol for the synthesis of a novel class of (Z)-5-(3-hydroxy-2-oxoindolin-3-yl)-2-iminothiazolidin-4-ones†
Received
15th November 2015
, Accepted 15th January 2016
First published on 26th January 2016
Abstract
A DABCO catalyzed, novel and efficient one-pot, four component protocol has been developed for the synthesis of (Z)-5-(3-hydroxy-2-oxoindolin-3-yl)-2-iminothiazolidin-4-one scaffolds under metal-free conditions. By virtue of simple and readily available starting materials, mild reaction conditions, and the high bioactivity of oxindole derivatives, this reaction promises diverse applications in medical chemistry.
Oxindoles bearing a quaternary stereogenic center at C-3 are privileged heterocyclic motifs which exist in a vast array of natural products and biologically active molecules such as maremycins A and B,1a convolutamydines A–E,1b arundaphine,1c dioxibrassinine,1d,e donaxaridine, welwitindolinone C,2a diazonamide A,2b leptosin D,2c elogentin K,2d neuroprotectins,2e and CPC-1.2f In particular, 3-functionalized-3-hydroxy-2-oxindoles are known to possess a broad spectrum of biological activities such as anti-inflammatory, antiviral, anticonvulsant, anti-HIV, antidepressant, antimicrobial, in addition to being potential new targets for chemotherapy (Fig. 1).3 For example, SM-130686 has been identified as a potent growth hormone secretagogue,4a whereas compound F in Fig. 1 showed improved anti-HIV properties than FDA-approved NNRTI drug efavirenz.4b
|
| Fig. 1 Selected representative examples of natural products and pharmaceuticals possessing 3-functionalized-3-hydroxy-2-oxindoles and some thiazolidinone derivatives with anticancer activity. | |
Additionally, five-membered heterocyclic ring containing thiazolidinone moiety plays an important role in the area of medicinal chemistry with diverse biological activities such as antimicrobial,5a,b antidiarrheal,5c anticonvulsant,5d–f antibacterial,5g antidiabetic,5h antihistaminic,6a,b anticancer,6c antifungal,6d and anti-HIV.6e Especially, 2-iminothiazolidin-4-one scaffolds have been found to possess significant pharmacological activities7 as well as therapeutics,8 fungicides and herbicides.9
For example, 2-heteroarylimino-1,3-thiazolidin-4-ones were possess antifungal or antibacterial properties,10 whereas darbufelone has reported anti-inflammatory activity.11 Imino-1,3-thiazolidin-4-one based derivatives compound H and I (Fig. 1) have been identified as potential anticancer agents.12 Compound K (BMS-858) (Fig. 1) recognized as a specific inhibitor of hepatitis C virus (HCV) replication in a genotype 1b replicon and showed no significant inhibitory activity in counter screens.13 Additionally, functionalized 2-imino-5-arylidenethiazolidin-4-one M used as an inhibitor of bacterial type III secretion system.14
Structure–activity relationship studies have shown that the biological and pharmacological activities of these scaffolds vary with substitution on C-3 position of oxindoles and C-5 position of the thiazolidinone frameworks.15 Hence it is thought of interest to accommodate oxindoles as well as iminothiazolidinones in a single molecular framework, which may result in the formation of some worthwhile molecules from a biological interest.
Multicomponent reactions (MCRs) have received much attention due to their wide range of applications in the organic, combinatorial, and medicinal chemistry for the rapid construction of novel and diverse molecular skeletons.16 The strategy offers outstanding features such as one-pot operation, single step, higher efficiency, operation simplicity, result in both atom and step-economy.17 MCRs can dramatically reduce chemical waste, energy, labor, time, cost, by-products formation, and provides an eco-friendly protocol by avoiding costly isolation and purification of intermediates.18 Due to these advantages, the design of novel multicomponent reactions has been considered as biological interest.
Tertiary amines (non-metallic bases) are the example of a privileged catalyst class. Particularly, DABCO (1,4-diazabicyclo[2,2,2]octane) has emerged as an efficient organic-hindered base which has been successfully used for various organic transformations like deprotection of peptides,19a benzylictrimethylsilyl ethers,19b cyclization of o-alkynylaryl isocyanides,19c as a catalyst for the Baylis–Hillman reaction,19d–f cross-coupling reactions,19g o-alkylations of phenols,19h and synthesis of glycidic amidester.19i Additionally, DABCO is commercially available, non-toxic, and inexpensive reagent that can be used without special precautions. As for literature there is no method reported for the synthesis of new (Z)-5-(3-hydroxy-2-oxoindolin-3-yl)-2-iminothiazolidin-4-ones using these current substrates. In continuation of our research work20 on the synthesis of 3-substituted-3-hydroxy-2-oxindole frameworks, we wish to report a one pot four component protocol for the synthesis of a novel class of functionalized (Z)-5-(3-hydroxy-2-oxoindolin-3-yl)-2-iminothiazolidin-4-ones by the reaction of substituted isatins, phenylisothiocyanate, ethylbromoacetate, and amines with DABCO in aqueous medium (Scheme 1).
|
| Scheme 1 Synthesis of (Z)-5-(3-hydroxy-2-oxoindolin-3-yl)-2-iminothiazolidin-4-one derivatives. | |
Results and discussions
Our optimization studies began by examination of reaction parameters which included catalyst, solvent and temperature for the modal product (Z)-3-butyl-5-(3-hydroxy-2-oxoindolin-3-yl)-2-(phenylimino)thiazolidin-4-one 5a. The results are summarized in Table 1. Initially, we treated simple isatin, phenylisothiocyanate, ethylbromoacetate and butylamine in the presence of 10 mol% DBU in 5 mL of H2O at 70 °C. We obtained the solid product in 55% yield only even after 1 h. The structure of obtained product was confirmed by means of 1H NMR, 13C NMR, IR and mass spectrometry analysis.
Table 1 Optimization of reaction conditiona
|
Entry |
Catalyst (mol%) |
Solvent |
Time (h) |
Yieldb [%] |
Reaction conditions: isatin 1a (1 mmol), butylamine 2a (1 mmol), phenylisothiocyanate 3 (1 mmol) and ethylbromoacetate 4 (1 mmol) base in solvent (5 mL) at rt and 70 °C. Isolated yield. At rt conditions. |
1 |
— |
H2O |
12 |
— |
2 |
DBU (30) |
H2O |
1 |
55 |
3 |
DBU (60) |
H2O |
2 |
50 |
4 |
DABCO (10) |
H2O |
12 |
—c |
5 |
DABCO (10) |
H2O |
1 |
70 |
6 |
DABCO (30) |
H2O |
0.5 |
90 |
7 |
DABCO (50) |
H2O |
1 |
80 |
8 |
DABCO (30) |
EtOH |
1 |
65 |
9 |
DABCO (30) |
MeOH |
1 |
55 |
10 |
DABCO (30) |
THF |
1 |
30 |
11 |
DABCO (30) |
CH3CN |
1 |
35 |
12 |
Quinuclidine (30) |
H2O |
1 |
40 |
13 |
Urotropine (30) |
H2O |
1 |
35 |
14 |
DBN (30) |
H2O |
1 |
50 |
15 |
Troger's base (30) |
H2O |
1 |
30 |
16 |
Pyridine (30) |
H2O |
1 |
30 |
17 |
Piperidine (30) |
H2O |
1 |
25 |
18 |
TEA (30) |
H2O |
1 |
30 |
19 |
DIPEA (30) |
H2O |
1 |
25 |
20 |
KOH (30) |
H2O |
1 |
— |
21 |
K2CO3 (30) |
H2O |
1 |
— |
22 |
Cs2CO3 (30) |
H2O |
1 |
— |
23 |
MeONa (30) |
H2O |
1 |
— |
Further increase in the amount of DBU (30 mol% to 60 mmol%) did not improve the yield of the product (Table 1, entry 3). However, the reaction did not proceed in the absence of catalyst (Table 1, entry 1), which indicated that the use of base catalyst is essential for this MCR. Later, other bases also were tested for this MCR. First, DABCO (10 mol%) was used at room temperature and under heating condition (Table 1, entries 4 and 5 respectively), and the results indicated that DABCO was superior to DBU. It was noticed that there was a maximum increase in the yield (90%), when the amount of DABCO raised from 10 mol% to 30 mol% in 30 min (Table 1, entry 6). However, further raising the amount of DABCO did not increase in the yield (Table 1, entry 7). Next, quinuclidine, urotropine, DBN, troger's base, pyridine, piperidine, TEA and DIPEA as a catalyst for this reaction also were examined, but the results were inadequate (Table 1, entries 12–19). In addition, the inorganic bases such as KOH, K2CO3, Cs2CO3 and MeONa were ineffective for this reaction (Table 1, entries 20 and 23).
Further to optimize the reaction conditions, the reaction was studied in different solvents. Screening of solvents revealed that H2O turned out to be suitable solvent, which provided not only a shorter reaction time, but also a higher yield than other tested solvents such as EtOH, MeOH, THF and CH3CN (Table 1, entries 8–11). Therefore, the reaction conditions of 30 mmol% of DABCO as a catalyst in H2O at 70 °C were best conditions for the preparation of 5a.
To make the present protocol general, various isatins 1 and amines 2 were examined under optimized conditions and the results are summarized in Table 2. The reaction of butylamine 2a and ethylamine 2d with simple isatin 1a underwent smoothly in the standard reaction condition to furnish the desired product in a high yield (Table 2, entries 5a and 5r). Isatins bearing different substituents on the aromatic ring could also be coupled effectively under this condition. For example 5-halo isatins like 5-fluoro isatin 1b 5-chloro isatin 1c, 5-bromo isatin 1d, and 5-iodo isatin 1e reacted with amine (2a/2b/2c/2d) under standard condition and resulted in moderate yields of product (Table 2, entries 5b, 5c, 5i, 5j, 5k, 5p, 5q, 5s, 5t, 5u and 5v). Other 5-substituted isatins like 5-(trifluoromethoxy) isatin 1h reacted smoothly with 2a to furnish desired product in high yield (Table 2, entry 5e). The reaction was not only successful with isatins having electron withdrawing substituent but also with isatins bearing electron donating group like 5-methyl isatin 1f and 5-methoxy isatin 1g (Table 2, entries 5d, 5l, 5m, 5w and 5x). As like mono-substituted isatins, di-substituted isatin like 5,7-dimethyl isatin 1i and 4,7-dichloro isatin 1j reacted in the same way and afforded comparatively less yield of desired products under standard reaction condition (Table 2, entries 5f, 5g, and 5n). To further expand the scope of the method we were keen to explore cyclic amines in this reaction under the optimized reaction conditions. In this context we performed the reaction of cyclopropylamine 2c with different substituted isatins under standard reaction conditions and found the formation of desired products in good yield (Table 2, entries 5o–5q). Moreover, this transformation is clean, easy to work up and all the structurally varied substrates reacted smoothly under the standard reaction conditions to afford their respective products in high purities with good yields (products 5a–5x).
Table 2 Scope of isatins and amines for the synthesis of (Z)-5-(3-hydroxy-2-oxoindolin-3-yl)-2-iminothiazolidin-4-onesa
Reaction conditions: isatin 1(a–j) (1 mmol), amine 2(a–d) (1 mmol), phenylisothiocyanate 3 (1 mmol) and ethylbromoacetate 4 (1 mmol) DABCO (30 mol%) in H2O (5 mL) at 70 °C and yields are given as an isolated yield. All products 5(a–x) were characterized by NMR, mass and IR spectroscopic techniques. |
|
A plausible mechanism for this DABCO catalyzed four-componenet reaction proposed and illustrated in Scheme 2. The formation of product may be explained by the reaction of ethylbromoaectate (4) with DABCO which forms the quaternary salt A. Later it reacts with sulfur of thiourea derivative B (which was in situ generated from amine 2 and phenylisothiocyanate 3) to furnish the intermediate C by eliminating HBr and DABCO. Next, the nucleophile of amine group promptly attacked on carbonyl group of ester by proton abstraction by DABCO leading to the five-membered cyclised intermediate E. Finally, the nucleophile of E which is formed by proton abstraction by DABCO attacked on isatin to furnish the required product (Z)-5-(3-hydroxy-2-oxoindolin-3-yl)-2-iminothiazolidin-4-one 5. However the stereo chemistry of the product 5 could not be determined because of difficulty in the formation of crystal for X-ray data.
|
| Scheme 2 Putative mechanistic pathway for the formation of (Z)-5-(3-hydroxy-2-oxoindolin-3-yl)-2-iminothiazolidin-4-ones. | |
Conclusion
In summary, we have described a novel and efficient method for the synthesis of (Z)-5-(3-hydroxy-2-oxoindolin-3-yl)-2-iminothiazolidin-4-one derivatives from simple, commercially cheap and readily available starting materials. The DABCO catalyzed four-component reaction of isatins, amines, phenylisothiocyanate and ethylbromoacetate proceeds smoothly under metal-free conditions. This novel method has many important features such as, high efficiency, good yields, broad substrate scope and also it involves the formation of four new bonds (2 C–N, 1 C–S, 1 C–C) in a cascade pathway.
Experimental section
General information
Isatins, amines, phenylisothiocyanate, ethylbromoacetate, DABCO and all solvents were purchased from Sigma-Aldrich and Alpha Aesar and used as received without further purification. 1H NMR spectra were recorded at 300 MHz and 13C NMR spectra at 75 MHz spectrometers in DMSO-d6 or CDCl3 + DMSO-d6. Chemical shifts (d) are reported in parts per million (ppm) relative to residual CHCl3 (1H: δ 7.26 ppm, 13C: δ 77.00 ppm) as an internal reference. Coupling constants (J) are reported in Hertz (Hz) and peak multiplicity abbreviations used as follows: s—singlet, d—doublet, t—triplet, q—quartet, m—multiplet and dd—doublet of doublet. Chemical shifts (δ) are reported relative to TMS (δ 0.0) as an internal standard in ppm. Melting points were measured on a BUCHI melting point machine. IR spectra were recorded on a Thermo Nicolet FT/IR-5700 spectrometer. Mass spectra were recorded using a Waters mass spectrometer. High resolution mass spectra (HRMS) were recorded using an Applied Bio-Sciences HRMS spectrometer at the National Centre for Mass Spectroscopy-IICT.
General procedure for the synthesis of (Z)-3-butyl-5-(3-hydroxy-2-oxoindolin-3-yl)-2-(phenylimino)thiazolidin-4-one (5a). A mixture of butylamine 2a (1 mmol), phenylisothiocyanate 3 (1 mmol) and DABCO (30 mol%) in H2O (5 mL) was stirred for 5 min at room temperature then the ethylbromoacetate 4 (1 mmol) was added and the mixture was stirred at 70 °C for 10 min. After cooling to room temperature, isatin 1 (1 mmol) was added to the reaction mixture and stirred for 10 min at room temperature. After completion of the reaction (monitored by TLC), the product 5a was extracted with ethylacetate and dried over Na2SO4 and the solvent was removed under reduced pressure. The crude product was purified by column chromatography using ethyl acetate/hexane and the product (Z)-3-butyl-5-(3-hydroxy-2-oxoindolin-3-yl)-2-(phenylimino)thiazolidin-4-one 5a was characterized by NMR, mass and IR spectroscopic techniques.
Spectral data for all the synthesized compounds
(Z)-3-Butyl-5-(3-hydroxy-2-oxoindolin-3-yl)-2-(phenylimino) thiazolidin-4-one (5a). Yield, 90%; isatin (1 mmol), butylamine (1 mmol), phenylisothiocyanate (1 mmol), ethylbromoacetate (1 mmol) and DABCO (30 mol%) in H2O (5 mL); yellow solid; mp 146–148 °C; 1H NMR (300 MHz, CDCl3 + DMSO-d6): δ 10.11 (s, 1H), 7.57 (d, J = 7.36 Hz, 1H), 7.51 (s, 1H), 7.37 (t, J = 7.74 Hz, 2H), 7.24 (t, J = 7.74 Hz, 1H), 7.14 (t, J = 7.36 Hz, 1H), 7.03–6.93 (m, 2H), 6.86 (d, J = 7.74 Hz, 1H), 6.51 (s, 1H), 4.82 (s, 1H), 3.68–3.46 (m, 2H), 1.37–0.84 (m, 4H), 0.75 (t, J = 6.98 Hz, 3H) ppm; 13C NMR (75 MHz, CDCl3 + DMSO-d6): δ 176.8, 171.5, 152.3, 147.7, 141.4, 130.9, 129.2, 126.5, 124.6, 124.5, 123.1, 120.7, 110.9, 76.7, 53.1, 42.9, 28.8, 19.7, 13.6 ppm; IR (KBr): ν = 3316, 2959, 2928, 1725, 1634, 1593, 1408, 1180, 1120, 754 cm−1; MS-ESI: m/z = 396 [M + 1]+; HRMS (ESI) calc. C21H22O3N3S: 396.13764, found: 396.13849.
(Z)-3-Butyl-5-(5-fluoro-3-hydroxy-2-oxoindolin-3-yl)-2(phenylimino)thiazolidin-4-one (5b). Yield, 81%; 5-fluoro isatin (1 mmol), butylamine (1 mmol), phenylisothiocyanate (1 mmol), ethylbromoacetate (1 mmol) and DABCO (30 mol%) in H2O (5 mL); red solid; mp 176–179 °C; 1H NMR (300 MHz, CDCl3 + DMSO-d6): δ 10.93 (s, 1H), 10.25 (s, 1H), 7.55 (s, 1H), 7.44–7.12 (m, 3H), 7.04–6.89 (m, 2H), 6.88–6.73 (m, 2H), 4.83 (s, 1H), 3.69–3.47 (m, 2H), 1.36–0.91 (m, 4H), 0.77 (t, J = 7.17 Hz, 3H) ppm; 13C NMR (75 MHz, CDCl3 + DMSO-d6): δ 183.6, 176.3, 159.0, 152.8, 147.6, 146.5, 138.0, 128.7, 124.5, 124.3, 124.0, 120.2, 113.3, 75.2, 55.1, 41.7, 28.2, 19.0, 13.1 ppm; IR (KBr): ν = 3262, 2930, 2860, 1728, 1633, 1487, 1397, 1192, 1145, 739, 694 cm−1; MS-ESI: m/z = 414 [M + 1]+; HRMS (ESI) calc. C21H21O3N3FS: 414.12822, found: 414.12887.
(Z)-3-Butyl-5-(5-chloro-3-hydroxy-2-oxoindolin-3-yl)-2(phenylimino)thiazolidin-4-one (5c). Yield, 83%; 5-chloro isatin (1 mmol), butylamine (1 mmol), phenylisothiocyanate (1 mmol), ethylbromoacetate (1 mmol) and DABCO (30 mol%) in H2O (5 mL); pale red solid; mp 184–186 °C; 1H NMR (300 MHz, CDCl3 + DMSO-d6): δ 10.16 (s, 1H), 7.58 (s, 1H), 7.47–7.33 (m, 2H), 7.27–7.13 (m, 2H), 6.99 (d, J = 7.55 Hz, 1H), 6.82 (d, J = 8.30 Hz, 1H), 6.62 (s, 1H), 4.80 (s, 1H), 3.70–3.49 (m, 2H), 1.38–1.20 (m, 2H), 1.15–0.92 (m, 2H), 0.79 (t, J = 6.98 Hz, 3H) ppm; 13C NMR (75 MHz, CDCl3 + DMSO-d6): δ 176.3, 169.7, 153.1, 147.9, 140.7, 129.8, 128.9, 128.1, 126.8, 124.7, 124.2, 120.4, 111.2, 75.3, 55.2, 42.0, 28.4, 19.2, 13.3 ppm; IR (KBr): ν = 3275, 2956, 2872, 1736, 1638, 1594, 1397, 1181, 1129, 698 cm−1; MS-ESI: m/z = 430 [M + 1]+; HRMS (ESI) calc. C21H21O3N3ClS: 430.09867, found: 430.09928.
(Z)-3-Butyl-5-(3-hydroxy-5-methoxy-2-oxoindolin-3-yl)-2-(phenylimino)thiazolidin-4-one (5d). Yield, 85%; 5-methoxy isatin (1 mmol), butylamine (1 mmol), phenylisothiocyanate (1 mmol), ethylbromoacetate (1 mmol) and DABCO (30 mol%) in H2O (5 mL); block solid; mp 138–140 °C; 1H NMR (300 MHz, CDCl3 + DMSO-d6): δ 10.19 (s, 1H), 7.38 (t, J = 7.97 Hz, 3H), 7.23–7.12 (m, 2H), 7.01–6.94 (m, 2H), 6.82–6.73 (m, 3H), 4.80 (s, 1H), 3.75 (s, 3H), 3.64–3.43 (m, 2H), 1.12–0.81 (m, 4H), 0.74 (t, J = 7.15 Hz, 3H) ppm; 13C NMR (75 MHz, CDCl3 + DMSO-d6): δ 174.7, 167.9, 153.3, 152.1, 146.6, 134.3, 127.6, 126.4, 122.7, 119.1, 113.4, 109.6, 108.8, 73.7, 54.3, 53.8, 40.2, 27.0, 17.7, 12.0 ppm; IR (KBr): ν = 3243, 2957, 2873, 1722, 1705, 1633, 1592, 1487, 1391, 1202, 1184 cm−1; MS-ESI: m/z = 426 [M + 1]+; HRMS (ESI) calc. C22H24O4N3S: 426.14820, found: 426.14872.
(Z)-3-Butyl-5-(3-hydroxy-2-oxo-5-(trifluoromethoxy)indolin-3-yl)-2-(phenylimino)thiazolidin-4-one (5e). Yield, 84%; 5-(trifluoromethoxy) isatin (1 mmol), butylamine (1 mmol), phenylisothiocyanate (1 mmol), ethylbromoacetate (1 mmol) and DABCO (30 mol%) in H2O (5 mL); yellow solid; mp 193–195 °C; 1H NMR (300 MHz, CDCl3 + DMSO-d6): δ 8.18 (s, 1H), 7.39 (s, 1H), 7.33 (t, J = 8.08 Hz, 2H), 7.18–7.12 (m, 2H), 6.91 (d, J = 8.54 Hz, 2H), 6.86 (d, J = 8.08 Hz, 1H), 4.67 (s, 1H), 3.81–3.66 (m, 2H), 1.33–1.15 (m, 4H), 0.86 (t, J = 7.47 Hz, 3H) ppm; 13C NMR (75 MHz, CDCl3 + DMSO-d6): δ 176.0, 168.9, 152.4, 147.5, 142.9, 141.0, 128.5, 128.3, 127.5, 123.7, 122.7, 120.0, 117.8, 110.1, 74.7, 55.3, 41.5, 27.9, 18.7, 12.7 ppm; IR (KBr): ν = 3265, 2928, 2856, 1733, 1712, 1638, 1595, 1398, 1268, 1188, 1158, 695 cm−1; MS-ESI: m/z = 480 [M + 1]+; HRMS (ESI) calc. C22H21O4N3F3S: 480.11994, found: 480.12021.
(Z)-3-Butyl-5-(3-hydroxy-5,7-dimethyl-2-oxoindolin-3-yl)-2-(phenylimino)thiazolidin-4-one (5f). Yield, 72%; 5,7-dimethyl isatin (1 mmol), butylamine (1 mmol), phenylisothiocyanate (1 mmol), ethylbromoacetate (1 mmol) and DABCO (30 mol%) in H2O (5 mL); brown solid; mp 226–228 °C; 1H NMR (300 MHz, CDCl3 + DMSO-d6): δ 10.42 (s, 1H), 7.40 (t, J = 7.78 Hz, 2H), 7.21–7.14 (m, 2H), 6.95 (d, J = 7.47 Hz, 2H), 6.87 (s, 1H), 6.68 (s, 1H), 4.74 (s, 1H), 3.57–3.50 (m, 2H), 2.25 (s, 3H), 2.16 (s, 3H), 1.17–1.04 (m, 1H), 0.98–0.75 (m, 3H), 0.70 (t, J = 7.17 Hz, 3H) ppm; 13C NMR (75 MHz, CDCl3 + DMSO-d6): δ 176.1, 169.0, 153.0, 147.4, 137.7, 131.1, 129.9, 128.2, 125.6, 123.3, 121.6, 119.8, 118.3, 74.7, 54.8, 41.1, 27.7, 19.9, 18.4, 15.4, 12.7 ppm; IR (KBr): ν = 3297, 2954, 1715, 1698, 1634, 1596, 1486, 1398, 1155 cm−1; MS-ESI: m/z = 424 [M + 1]+; HRMS (ESI) calc. C23H26O3N3S: 424.16894, found: 424.16918.
(Z)-3-Butyl-5-(4,7-dichloro-3-hydroxy-2-oxoindolin-3-yl)-2-(phenylimino)thiazolidin-4-one (5g). Yield, 74%; 4,7-dichloro isatin (1 mmol), butylamine (1 mmol), phenylisothiocyanate (1 mmol), ethylbromoacetate (1 mmol) and DABCO (30 mol%) in H2O (5 mL); brown solid; mp 136–138 °C; 1H NMR (300 MHz, CDCl3 + DMSO-d6): δ 10.27 (s, 1H), 7.37–7.19 (m, 3H), 7.14–6.83 (m, 4H), 4.82 (s, 1H), 3.72–3.64 (m, 2H), 1.21–0.98 (m, 4H), 0.94 (t, J = 6.98 Hz, 3H) ppm; 13C NMR (75 MHz, CDCl3 + DMSO-d6): δ 173.8, 170.3, 150.5, 146.5, 141.4, 130.6, 127.9, 124.4, 123.3, 122.8, 119.9, 119.6, 113.0, 77.7, 51.4, 44.9, 27.7, 18.6, 12.6 ppm; IR (KBr): ν = 3406, 2930, 2873, 1738, 1634, 1613, 1594, 1465, 1388, 1344, 1158, 1057, 775 cm−1; MS-ESI: m/z = 464 [M + 1]+; HRMS (ESI) calc. C21H20O3N3Cl2S: 464.05969, found: 464.06090.
(Z)-3-Benzyl-5-(3-hydroxy-2-oxoindolin-3-yl)-2-(phenylimino)thiazolidin-4-one (5h). Yield, 90%; isatin (1 mmol), benzylamine (1 mmol), phenylisothiocyanate (1 mmol), ethylbromoacetate (1 mmol) and DABCO (30 mol%) in H2O (5 mL); pale yellow solid; mp 186–188 °C; 1H NMR (300 MHz, CDCl3 + DMSO-d6): δ 10.08 (s, 1H), 7.55 (d, J = 7.36 Hz, 1H), 7.39–7.30 (m, 3H), 7.18–7.07 (m, 4H), 6.97–6.81 (m, 5H), 6.51 (s, 1H), 4.93 (s, 1H), 4.77 (d, J = 5.09 Hz, 2H) ppm; 13C NMR (75 MHz, CDCl3 + DMSO-d6): δ 174.8, 168.1, 151.5, 146.3, 141.3, 133.7, 128.7, 127.6, 127.3, 126.5, 125.2, 125.0, 123.2, 122.8, 120.0, 119.2, 108.6, 73.3, 54.5, 43.6 ppm; IR (KBr): ν = 3292, 2926, 1728, 1643, 1470, 1399, 1333, 1173, 1020, 748 cm−1; MS-ESI: m/z = 430 [M + 1]+; HRMS (ESI) calc. C24H20O3N3S: 430.12199, found: 430.12215.
(Z)-3-Benzyl-5-(5-fluoro-3-hydroxy-2-oxoindolin-3-yl)-2-(phenylimino)thiazolidin-4-one (5i). Yield, 82%; 5-fluoro isatin (1 mmol), benzylamine (1 mmol), phenylisothiocyanate (1 mmol), ethylbromoacetate (1 mmol) and DABCO (30 mol%) in H2O (5 mL); white solid; mp 202–204 °C; 1H NMR (300 MHz, CDCl3 + DMSO-d6): δ 10.37 (s, 1H), 7.42–7.33 (m, 2H), 7.26 (dd, J = 2.64, 2.64 Hz, 2H), 7.20–7.09 (m, 3H), 6.97–6.85 (m, 6H), 4.91 (s, 1H), 4.75 (d, J = 1.70 Hz, 2H) ppm; 13C NMR (75 MHz, CDCl3 + DMSO-d6): δ 174.8, 167.9, 157.9, 154.7, 151.4, 146.4, 137.3, 133.8, 127.7, 126.6, 125.6, 125.5, 123.0, 119.2, 115.2, 114.9, 109.3, 73.6, 54.4, 43.8 ppm; IR (KBr): ν = 3291, 2936, 1727, 1704, 1644, 1590, 1484, 1402, 1333, 1246, 1188, 1088, 817, 695 cm−1; MS-ESI: m/z = 448 [M + 1]+; HRMS (ESI) calc. C24H19O3N3FS: 448.11257, found: 448.11293.
(Z)-3-Benzyl-5-(5-chloro-3-hydroxy-2-oxoindolin-3-yl)-2-(phenylimino)thiazolidin-4-one (5j). Yield, 84%; 5-chloro isatin (1 mmol), benzylamine (1 mmol), phenylisothiocyanate (1 mmol), ethylbromoacetate (1 mmol) and DABCO (30 mol%) in H2O (5 mL); white solid; mp 209–211 °C; 1H NMR (300 MHz, CDCl3 + DMSO-d6): δ 10.46 (s, 1H), 7.53 (d, J = 2.07 Hz, 1H), 7.41–7.34 (m, 2H), 7.19–7.11 (m, 4H), 6.97–6.89 (m, 3H), 6.87–6.82 (m, 2H), 6.75–6.69 (m, 1H), 4.89 (s, 1H), 4.75 (d, J = 10.57 Hz, 2H) ppm; 13C NMR (75 MHz, CDCl3 + DMSO-d6): δ 174.0, 167.5, 151.3, 146.1, 139.7, 133.4, 128.3, 127.4, 126.9, 126.3, 125.1, 124.6, 124.0, 123.0, 122.6, 118.7, 109.5, 72.9, 54.1, 43.4 ppm; IR (KBr): ν = 3278, 2923, 1732, 1703, 1646, 1589, 1479, 1401, 1174, 1097, 1022, 816, 695 cm−1; MS-ESI: m/z = 464 [M + 1]+; HRMS (ESI) calc. C24H19O3N3ClS: 464.08302, found: 464.08364.
(Z)-3-Benzyl-5-(3-hydroxy-5-iodo-2-oxoindolin-3-yl)-2-(phenylimino)thiazolidin-4-one (5k). Yield, 86%; 5-iodo isatin (1 mmol), benzylamine (1 mmol), phenylisothiocyanate (1 mmol), ethylbromoacetate (1 mmol) and DABCO (30 mol%) in H2O (5 mL); white solid; mp 215–217 °C; 1H NMR (300 MHz, CDCl3 + DMSO-d6): δ 10.19 (s, 1H), 7.48–7.44 (m, 1H), 7.42–7.34 (m, 2H), 7.22–7.12 (m, 4H), 7.02–6.81 (m, 4H), 6.73–6.64 (m, 1H), 6.61–6.54 (m, 1H), 4.87 (s, 1H), 4.77 (d, J = 9.63 Hz, 2H) ppm; 13C NMR (75 MHz, CDCl3 + DMSO-d6): δ 174.4, 168.0, 151.9, 146.8, 141.2, 137.4, 133.8, 132.2, 127.9, 127.8, 127.0, 125.7, 125.4, 123.1, 119.3, 111.1, 82.6, 73.6, 54.8, 44.2 ppm; IR (KBr): ν = 3281, 2920, 1730, 1700, 1646, 1589, 1404, 1332, 1174, 1093, 1023, 815, 694 cm−1; MS-ESI: m/z = 556 [M + 1]+; HRMS (ESI) calc. C24H19O3N3IS: 556.01239, found: 556.01345.
(Z)-3-Benzyl-5-(3-hydroxy-5-methyl-2-oxoindolin-3-yl)-2-(phenylimino)thiazolidin-4-one (5l). Yield, 78%; 5-methyl isatin (1 mmol), benzylamine (1 mmol), phenylisothiocyanate (1 mmol), ethylbromoacetate (1 mmol) and DABCO (30 mol%) in H2O (5 mL); white solid; mp 195–197 °C; 1H NMR (300 MHz, CDCl3 + DMSO-d6): δ 9.74 (s, 1H), 7.41–7.29 (m, 4H), 7.23–7.09 (m, 4H), 6.97–6.89 (m, 3H), 6.71 (d, J = 7.93 Hz, 1H), 6.26 (s, 1H), 4.88 (s, 1H), 4.79 (d, J = 11.08 Hz, 2H), 2.17 (s, 3H) ppm; 13C NMR (75 MHz, CDCl3 + DMSO-d6): δ 174.4, 167.8, 151.6, 146.2, 138.5, 133.5, 128.7, 128.6, 127.4, 126.2, 125.2, 125.0, 124.7, 123.6, 122.5, 118.8, 107.9, 73.1, 54.3, 43.4, 19.1 ppm; IR (KBr): ν = 3288, 2919, 1728, 1644, 1589, 1489, 1398, 1362, 1330, 1201, 1155, 1087, 813, 695 cm−1; MS-ESI: m/z = 444 [M + 1]+; HRMS (ESI) calc. C25H22O3N3S: 444.13764, found: 444.13795.
(Z)-3-Benzyl-5-(3-hydroxy-5-methoxy-2-oxoindolin-3-yl)-2-(phenylimino)thiazolidin-4-one (5m). Yield, 88%; 5-methoxy isatin (1 mmol), benzylamine (1 mmol), phenylisothiocyanate (1 mmol), ethylbromoacetate (1 mmol) and DABCO (30 mol%) in H2O (5 mL); brown solid; mp 105–107 °C; 1H NMR (300 MHz, CDCl3 + DMSO-d6): δ 10.18 (s, 1H), 7.38–7.31 (m, 3H), 7.18–7.08 (m, 4H), 6.91 (d, J = 7.17 Hz, 2H), 6.83–6.72 (m, 4H), 4.93 (s, 1H), 4.75 (d, J = 8.49 Hz, 2H), 3.58 (s, 3H) ppm; 13C NMR (75 MHz, CDCl3 + DMSO-d6): δ 174.7, 168.0, 153.2, 151.6, 146.3, 134.4, 133.8, 127.6, 127.4, 126.5, 126.3, 125.3, 122.8, 119.1, 114.2, 109.3, 109.0, 73.6, 54.5, 53.7, 43.7 ppm; IR (KBr): ν = 3309, 2928, 1725, 1633, 1590, 1488, 1386, 1204, 1158, 1028, 818, 695 cm−1; MS-ESI: m/z = 460 [M + 1]+; HRMS (ESI) calc. C25H22O4N3S: 460.13255, found: 460.13335.
(Z)-3-Benzyl-5-(3-hydroxy-5,7-dimethyl-2-oxoindolin-3-yl)-2-(phenylimino)thiazolidin-4-one (5n). Yield, 73%; 5,7-dimethyl isatin (1 mmol), benzylamine (1 mmol), phenylisothiocyanate (1 mmol), ethylbromoacetate (1 mmol) and DABCO (30 mol%) in H2O (5 mL); white solid; mp 238–240 °C; 1H NMR (300 MHz, CDCl3 + DMSO-d6): δ 10.33 (s, 1H), 7.40–7.34 (m, 3H), 7.20–7.06 (m, 3H), 6.91 (d, J = 7.36 Hz, 2H), 6.84 (s, 1H), 6.75 (d, J = 6.98 Hz, 2H), 6.66 (s, 1H), 4.87 (s, 1H), 4.72 (s, 2H), 2.16 (s, 3H), 2.15 (s, 3H) ppm; 13C NMR (75 MHz, CDCl3 + DMSO-d6): δ 175.5, 168.2, 152.0, 146.7, 137.3, 133.9, 130.8, 129.2, 127.8, 127.6, 126.5, 125.5, 125.1, 122.9, 121.3, 119.3, 117.6, 73.9, 54.7, 43.9, 19.4, 15.0 ppm; IR (KBr): ν = 3314, 2920, 1717, 1700, 1637, 1593, 1485, 1398, 1200, 1153, 1073, 695 cm−1; MS-ESI: m/z = 458 [M + 1]+; HRMS (ESI) calc. C26H24O3N3S: 458.15329, found: 458.15378.
(Z)-3-Cyclopropyl-5-(3-hydroxy-2-oxoindolin-3-yl)-2-(phenylimino)thiazolidin-4-one (5o). Yield, 81%; isatin (1 mmol), cyclopropylamine (1 mmol), phenylisothiocyanate (1 mmol), ethylbromoacetate (1 mmol) and DABCO (30 mol%) in H2O (5 mL); white solid; mp 190–192 °C; 1H NMR (300 MHz, CDCl3 + DMSO-d6): δ 10.43 (s, 1H), 7.71 (d, J = 7.36 Hz, 1H), 7.36–7.29 (m, 4H), 7.04–6.89 (m, 3H), 6.69–6.64 (m, 1H), 5.11 (s, 1H), 2.34–2.21 (m, 1H), 1.72–0.30 (m, 4H) ppm; 13C NMR (75 MHz, CDCl3 + DMSO-d6): δ 175.1, 168.3, 141.6, 131.3, 129.4, 129.3, 127.9, 126.0, 125.6, 123.3, 120.7, 120.5, 109.4, 74.3, 56.0, 22.3, 4.8, 4.1 ppm; IR (KBr): ν = 3270, 2931, 1720, 1695, 1621, 1471, 1371, 1185, 1145, 758 cm−1; MS-ESI: m/z = 380 [M + 1]+; HRMS (ESI) calc. C20H18O3N3S: 380.09912, found: 380.09983.
(Z)-3-Cyclopropyl-5-(5-fluoro-3-hydroxy-2-oxoindolin-3-yl)-2-(phenylimino)thiazolidin-4-one (5p). Yield, 84%; 5-fluoro isatin (1 mmol), cyclopropylamine (1 mmol), phenylisothiocyanate (1 mmol), ethylbromoacetate (1 mmol) and DABCO (30 mol%) in H2O (5 mL); white solid; mp 142–144 °C; 1H NMR (300 MHz, CDCl3 + DMSO-d6): δ 10.36 (s, 1H), 7.57 (s, 1H), 7.49–7.42 (m, 1H), 7.40–7.34 (m, 1H), 7.30–7.24 (m, 1H), 7.05–6.93 (m, 2H), 6.89–6.79 (m, 2H), 4.90 (s, 1H), 2.39–2.30 (m, 1H), 1.06–0.41 (m, 4H) ppm; 13C NMR (75 MHz, CDCl3 + DMSO-d6): δ 175.3, 169.4, 137.7, 131.4, 128.2, 126.1, 115.9, 115.7, 111.5, 111.2, 111.0, 110.4, 110.2, 74.6, 55.1, 22.7, 5.0, 4.4 ppm; IR (KBr): ν = 3277, 2927, 1722, 1696, 1486, 1380, 1192, 1144, 822 cm−1; MS-ESI: m/z = 398 [M + 1]+; HRMS (ESI) calc. C20H17O3N3FS: 398.02354, found: 398.02358.
(Z)-5-(5-Chloro-3-hydroxy-2-oxoindolin-3-yl)-3-cyclopropyl-2-(phenylimino)thiazolidin-4-one (5q). Yield, 79%; 5-chloro isatin (1 mmol), cyclopropylamine (1 mmol), phenylisothiocyanate (1 mmol), ethylbromoacetate (1 mmol) and DABCO (30 mol%) in H2O (5 mL); white solid; mp 149–151 °C; 1H NMR (300 MHz, CDCl3 + DMSO-d6): δ 10.36 (s, 1H), 7.54–7.36 (m, 4H), 7.32–7.18 (m, 2H), 6.89–6.79 (m, 2H), 4.89 (s, 1H), 2.42–2.33 (m, 1H), 1.04–0.45 (m, 4H) ppm; 13C NMR (75 MHz, CDCl3 + DMSO-d6): δ 175.0, 169.3, 140.3, 131.4, 129.4, 129.3, 128.2, 127.4, 126.1, 125.6, 123.6, 123.4, 110.6, 74.3, 55.1, 22.6, 5.1, 4.4 ppm; IR (KBr): ν = 3281, 1722, 1695, 1620, 1476, 1380, 1181, 823 cm−1; MS-ESI: m/z = 414 [M + 1]+; HRMS (ESI) calc. C20H17O3N3ClS: 414.01276, found: 414.01321.
(Z)-3-Ethyl-5-(3-hydroxy-2-oxoindolin-3-yl)-2-(phenylimino)thiaz-olidin-4-one (5r). Yield, 88%; isatin (1 mmol), ethylamine (1 mmol), phenylisothiocyanate (1 mmol), ethylbromoacetate (1 mmol) and DABCO (30 mol%) in H2O (5 mL); white solid; mp 147–149 °C; 1H NMR (300 MHz, CDCl3 + DMSO-d6): δ 10.22 (s, 1H), 7.59 (d, J = 7.36 Hz, 1H), 7.51 (s, 1H), 7.37–7.18 (m, 2H), 7.07–6.82 (m, 3H), 6.81–6.61 (m, 2H), 4.97 (s, 1H), 3.38 (q, J = 7.36 Hz, 2H), 0.67 (t, J = 7.36 Hz, 3H) ppm; 13C NMR (75 MHz, CDCl3 + DMSO-d6): δ 174.4, 169.1, 167.9, 141.0, 128.8, 128.6, 127.3, 125.5, 125.1, 122.6, 120.0, 119.9, 108.4, 73.3, 55.5, 34.1, 10.2 ppm; IR (KBr): ν = 3280, 2934, 1719, 1682, 1622, 1471, 1342, 1222, 1183, 1090, 755 cm−1; MS-ESI: m/z = 368 [M + 1]+; HRMS (ESI) calc. C19H18O3N3S: 368.14319, found: 368.14381.
(Z)-3-Ethyl-5-(5-fluoro-3-hydroxy-2-oxoindolin-3-yl)-2-(phenylim-ino)thiazolidin-4-one (5s). Yield, 74%; 5-fluoro isatin (1 mmol), ethylamine (1 mmol), phenylisothiocyanate (1 mmol), ethylbromoacetate (1 mmol) and DABCO (30 mol%) in H2O (5 mL); white solid; mp 164–166 °C; 1H NMR (300 MHz, CDCl3 + DMSO-d6): δ 10.41 (s, 1H), 7.66–7.43 (m, 1H), 7.40–7.30 (m, 2H), 7.08–6.75 (m, 5H), 4.99 (s, 1H), 3.40 (q, J = 7.15 Hz, 2H), 0.70 (t, J = 7.15 Hz, 3H) ppm; 13C NMR (75 MHz, CDCl3 + DMSO-d6): δ 175.4, 169.8, 168.7, 158.8, 137.8, 128.2, 127.1, 126.1, 115.9, 115.6, 111.5, 111.2, 110.2, 74.5, 56.0, 35.2, 11.1 ppm; IR (KBr): ν = 3259, 2930, 1722, 1684, 1488, 1392, 1340, 1193, 1148, 822 cm−1; MS-ESI: m/z = 386 [M + 1]+; HRMS (ESI) calc. C19H17O3N3FS: 386.01211, found: 386.01295.
(Z)-5-(5-Chloro-3-hydroxy-2-oxoindolin-3-yl)-3-ethyl-2-(phenylimino)thiazolidin-4-one (5t). Yield, 78%; 5-chloro isatin (1 mmol), ethylamine (1 mmol), phenylisothiocyanate (1 mmol), ethylbromoacetate (1 mmol) and DABCO (30 mol%) in H2O (5 mL); white solid; mp 169–171 °C; 1H NMR (300 MHz, CDCl3 + DMSO-d6): δ 10.57 (s, 1H), 7.70 (s, 1H), 7.54 (d, J = 2.07 Hz, 1H), 7.49–7.34 (m, 1H), 7.32–7.13 (m, 2H), 7.08–6.77 (m, 3H), 4.98 (s, 1H), 3.39 (q, J = 7.17 Hz, 2H), 0.68 (t, J = 7.17 Hz, 3H) ppm; 13C NMR (75 MHz, CDCl3 + DMSO-d6): δ 174.7, 169.3, 168.3, 140.2, 129.0, 128.8, 127.8, 127.5, 127.3, 125.8, 125.2, 123.3, 110.2, 73.8, 55.7, 34.8, 10.6 ppm; IR (KBr): ν = 3280, 2934, 1717, 1685, 1480, 1337, 1180, 1104, 824 cm−1; MS-ESI: m/z = 402 [M + 1]+; HRMS (ESI) calc. C19H17O3N3ClS: 402.13492, found: 402.13512.
(Z)-5-(5-Bromo-3-hydroxy-2-oxoindolin-3-yl)-3-ethyl-2-(phenylimino)thiazolidin-4-one (5u). Yield, 76%; 5-bromo isatin (1 mmol), ethylamine (1 mmol), phenylisothiocyanate (1 mmol), ethylbromoacetate (1 mmol) and DABCO (30 mol%) in H2O (5 mL); pale yellow solid; mp 190–192 °C; 1H NMR (300 MHz, CDCl3 + DMSO-d6): δ 10.62 (s, 1H), 7.82–7.54 (m, 2H), 7.52–7.31 (m, 2H), 7.29–7.01 (m, 2H), 6.95–6.72 (m, 2H), 4.97 (s, 1H), 3.37 (q, J = 7.17 Hz, 2H), 0.66 (t, J = 7.17 Hz, 3H) ppm; 13C NMR (75 MHz, CDCl3 + DMSO-d6): δ 174.2, 169.0, 168.0, 140.4, 131.6, 131.4, 127.6, 127.5, 125.6, 112.1, 110.7, 110.5, 108.6, 73.4, 55.4, 34.4, 10.3 ppm; IR (KBr): ν = 3278, 2936, 1717, 1684, 1618, 1476, 1337, 1221, 1178, 1100, 822 cm−1; MS-ESI: m/z = 446 [M]+, 448 [M + 2]+; HRMS (ESI) calc. C19H17O3N3BrS: 446.08519, found: 446.08469.
(Z)-3-Ethyl-5-(3-hydroxy-5-iodo-2-oxoindolin-3-yl)-2-(phenylimino) thiazolidin-4-one (5v). Yield, 77%; 5-iodo isatin (1 mmol), ethylamine (1 mmol), phenylisothiocyanate (1 mmol), ethylbromoacetate (1 mmol) and DABCO (30 mol%) in H2O (5 mL); brown solid; mp 199–201 °C; 1H NMR (300 MHz, CDCl3 + DMSO-d6): δ 10.67 (s, 1H), 8.04–7.61 (m, 2H), 7.58–7.33 (m, 2H), 7.27–6.97 (m, 2H), 6.83–6.56 (m, 2H), 4.96 (s, 1H), 3.35 (q, J = 7.17 Hz, 2H), 0.63 (t, J = 7.17 Hz, 3H) ppm; 13C NMR (75 MHz, CDCl3 + DMSO-d6): δ 174.1, 169.1, 168.1, 141.1, 137.6, 137.4, 131.3, 127.9, 127.7, 125.8, 111.4, 111.1, 82.3, 73.4, 55.6, 34.6, 10.5 ppm; IR (KBr): ν = 3295, 2974, 1715, 1694, 1467, 1378, 1332, 1222, 1175, 1093, 828 cm−1; MS-ESI: m/z = 493 [M + 1]+; HRMS (ESI) calc. C19H17O3N3IS: 493.21462, found: 493.21493.
(Z)-3-Ethyl-5-(3-hydroxy-5-methyl-2-oxoindolin-3-yl)-2-(phenyl-imino)thiazolidin-4-one (5w). Yield, 83%; 5-methyl isatin (1 mmol), ethylamine (1 mmol), phenylisothiocyanate (1 mmol), ethylbromoacetate (1 mmol) and DABCO (30 mol%) in H2O (5 mL); brown solid; mp 167–169 °C; 1H NMR (300 MHz, CDCl3 + DMSO-d6): δ 10.35 (s, 1H), 7.84 (s, 1H), 7.54–7.28 (m, 2H), 7.23–6.95 (m, 2H), 6.92–6.59 (m, 3H), 4.94 (s, 1H), 3.34 (q, J = 7.17 Hz, 2H), 2.24 (s, 3H), 0.60 (t, J = 7.17 Hz, 3H) ppm; 13C NMR (75 MHz, CDCl3 + DMSO-d6): δ 174.5, 169.3, 168.0, 138.6, 129.1, 128.8, 127.4, 127.2, 125.6, 125.2, 123.2, 108.5, 108.3, 73.5, 55.5, 34.2, 19.2, 10.1 ppm; IR (KBr): ν = 3296, 2952, 1712, 1674, 1628, 1581, 1472, 1318, 1123 cm−1; MS-ESI: m/z = 382 [M + 1]+; HRMS (ESI) calc. C20H20O3N3S: 382.11456, found: 382.11501.
(Z)-3-Ethyl-5-(3-hydroxy-5-methoxy-2-oxoindolin-3-yl)-2-(phenylimino)thiazolidin-4-one (5x). Yield, 80%; 5-methoxy isatin (1 mmol), ethylamine (1 mmol), phenylisothiocyanate (1 mmol), ethylbromoacetate (1 mmol) and DABCO (30 mol%) in H2O (5 mL); white solid; mp 133–135 °C; 1H NMR (300 MHz, CDCl3 + DMSO-d6): δ 10.30 (s, 1H), 7.41–7.14 (m, 3H), 7.05–6.65 (m, 5H), 4.95 (s, 1H), 3.70 (s, 3H), 3.34 (q, J = 7.17 Hz, 2H), 0.62 (t, J = 7.17 Hz, 3H) ppm; 13C NMR (75 MHz, CDCl3 + DMSO-d6): δ 174.1, 169.1, 167.7, 167.5, 153.0, 134.1, 134.0, 127.2, 126.1, 125.4, 113.3, 109.2, 108.8, 73.4, 55.3, 53.7, 34.0, 10.0 ppm; IR (KBr): ν = 3258, 2934, 1721, 1683, 1493, 1341, 1299, 1209, 1157, 1090, 887 cm−1; MS-ESI: m/z = 398 [M + 1]+; HRMS (ESI) calc. C20H20O4N3S: 398.11568, found: 398.11591.
Acknowledgements
B M B, G S K and A S thank CSIR-UGC for the award of a fellowship and Dr Ahmed Kamal, Outstanding scientist and Head of MCP Division for his support and encouragement. The authors thank CSIR, New Delhi for financial support as part of XII five year plan programme under title ACT (CSC-0301).
References
-
(a) Y. Tang, I. Sattler, R. Thiericke and S. Grabley, Eur. J. Org. Chem., 2001, 261 CrossRef CAS;
(b) H. Zhang, Y. Kamano, Y. Ichihara, H. Kizu, K. Komiyama, H. Itokawa and G. R. Pettit, Tetrahedron, 1995, 51, 5523 CrossRef CAS;
(c) V. Khuzhaev, I. Zhalolov, K. Turgunov, B. Tashkhodzhaev, M. Levkovich, S. F. Aripova and A. S. Shashkov, Chem. Nat. Compd., 2004, 40, 269 CrossRef CAS;
(d) K. Monde, K. Sasaki, A. Shirata and M. Takasugi, Phytochemistry, 1991, 30, 2915 CrossRef CAS;
(e) M. Suchy, P. Kutschy, K. Monde, H. Goto, N. Harada, M. Takasugi, M. Dzurilla and E. Balentova, J. Org. Chem., 2001, 66, 3940 CrossRef CAS PubMed.
-
(a) J. I. Jimenez, U. Huber, R. E. Moore and G. M. L. Patterson, J. Nat. Prod., 1999, 62, 569 CrossRef CAS PubMed;
(b) K. C. Nicolaou, P. B. Rao, J. Hao, M. V. Reddy, G. Rassias, X. Huang, Y. K. Chen and S. A. Snyder, Angew. Chem., Int. Ed., 2003, 42, 1753 CrossRef CAS PubMed;
(c) C. Takahashi, A. Numata, Y. Ito, E. Matsumura, H. Araki, H. Iwaki and K. Kushida, J. Chem. Soc., Perkin Trans. 1, 1859, 1994 Search PubMed;
(d) H. Suzuki, H. Morita, M. Shiro and J. Kobayashi, Tetrahedron, 2004, 60, 2489 CrossRef CAS;
(e) H. Kobayashi, Y. K. Shin, K. Nagai, K. I Suzuki, Y. Hayakawa, H. Seto, B. Yun, I. Ryoo, J. Kim, C. Kim and I. Yoo, J. Antibiot., 2001, 54, 1013 CrossRef CAS PubMed;
(f) M. Kitajima, I. Mori, K. Arai, N. Kogure and H. Takayama, Tetrahedron Lett., 2006, 47, 3199 CrossRef CAS.
-
(a) S. Peddibhotla, Curr. Bioact. Compd., 2009, 5, 20 CrossRef CAS;
(b) M. E. Welsch, S. A. Snyder and B. R. Stockwell, Curr. Opin. Chem. Biol., 2010, 14, 347 CrossRef CAS PubMed;
(c) J. P. MacDonald, J. J. Badillo, G. E. Arevalo, A. Silva-Garcia and A. K. Franz, ACS Comb. Sci., 2012, 14, 285 CrossRef CAS PubMed;
(d) S. Peddibhotla, Curr. Bioact. Compd., 2009, 5, 20 CrossRef CAS;
(e) C. V. Galliford and K. A. Scheidt, Angew. Chem., Int. Ed., 2007, 119, 8902 CrossRef;
(f) H. Pajouhesh, R. Parsons and F. D. Popp, J. Pharm. Sci., 1983, 72, 318 CrossRef CAS PubMed;
(g) F. Garrido, J. Ibanez, E. Gonalons and A. Giraldez, Eur. J. Med. Chem., 1975, 10, 143 CAS.
-
(a) P. Hewawasam, N. A. Meanwell, V. K. Gribkoff, S. I. Dworetzky and C. G. Boissard, Bioorg. Med. Chem. Lett., 1997, 7, 1255 CrossRef CAS;
(b) P. Hewawasam, M. Erway, S. L. Moon, J. Knipe, H. Weiner, C. G. Boissard, D. J. Post-Munson, Q. Gao, S. Huang, V. K. Gribkoff and N. A. Meanwell, J. Med. Chem., 2002, 45, 1487 CrossRef CAS PubMed.
-
(a) A. Deep, S. Jain, P. C. Sharma, S. K. Mittal, P. Phogat and M. Malhotra, Arabian J. Chem., 2014, 7, 287 CrossRef CAS;
(b) P. Vicini, A. Geronikaki, K. Anastasia, M. Incerti and F. Zani, Bioorg. Med. Chem., 2006, 14, 3859 CrossRef CAS PubMed;
(c) M. V. Diurno, O. Mazzoni, A. A. Izzo and A. Bolognese, Il Farmaco, 1997, 52, 237 CAS;
(d) A. P. G. Nikalje, A. N. Shaikh, S. I. Shaikh, F. A. K. Khan, J. N. Sangshetti and D. B. Shinde, Bioorg. Med. Chem. Lett., 2014, 24, 5558 CrossRef CAS PubMed;
(e) E. Rydzik, A. Szadowska and A. Kaminska, Acta Pol. Pharm., 1984, 41, 459 CAS;
(f) H. D. Troutman and L. M. Long, J. Am. Chem. Soc., 1948, 70, 3436 CrossRef CAS PubMed;
(g) S. B. Kalaiya and A. R. Parikh, J. Indian Chem. Soc., 1987, 64, 172 CAS;
(h) R. Maccari, R. M. Vitale, R. Ottana, M. Rocchiccioli, A. Marrazzo, V. Cardile, A. C. E. Graziano, P. Amodeo, U. Mura and A. DelCorso, Eur. J. Med. Chem., 2014, 81, 1 CrossRef CAS PubMed.
-
(a) T. Previtera, M. G. Vigorita, M. Bisila, F. Orsini, F. Benetolla and G. Bombieri, Eur. J. Med. Chem., 1994, 29, 317 CrossRef CAS;
(b) M. V. Diurno, O. Mazzoni, G. Correale and I. G. Monterry, Il Farmaco, 1999, 54, 579 CrossRef CAS PubMed;
(c) M. Y. Ebeid, O. A. Fathallah, M. I. El-Zaher, M. M. Kamel, W. A. Abdon and M. M. Anwar, Bull. Fac. Pharm., 1996, 34, 125 CAS;
(d) H. L. Liu, Z. C. Li and T. Anthonsen, Molecules, 2000, 5, 1055 CrossRef CAS;
(e) R. K. Rawal, Y. S. Prabhakar, S. B. Katti and E. De Clercq, Bioorg. Med. Chem., 2005, 13, 6771 CrossRef CAS PubMed.
-
(a) M. H. Bolli, S. Abele, C. Binkert, R. Bravo, S. Buchmann, D. Bur, J. Gatfield, P. Hess, C. Kohl, C. Mangold, B. Matthys, K. Menyhart, C. Müller, O. Nayler, M. Scherrz, G. Schmidt, V. Sippel, B. Steiner, D. Strasser, A. Treiber and T. Weller, J. Med. Chem., 2010, 53, 4198 CrossRef CAS PubMed;
(b) A. Verma and S. K. Saraf, Eur. J. Med. Chem., 2008, 43, 897 CrossRef CAS PubMed;
(c) T. Kline, H. B. Felise, K. C. Barry, S. R. Jackson, H. V. Nguyen and S. I. Miller, J. Med. Chem., 2008, 51, 7065 CrossRef CAS PubMed;
(d) R. Ottanà, R. Maccari, M. L. Berreca, G. Bruno, A. Rotondo, A. Rossi, G. Chiricosta, R. D. Paola, L. Sautebin, S. Cuzzocrea and M. G. Vigorita, Bioorg. Med. Chem., 2005, 13, 4243 CrossRef PubMed.
-
(a) Z. Kleinrok, D. Malec and A. Kruszewska, Diss. Pharm. Pharmacol., 1972, 24, 467 CAS;
(b) L. Musial and M. Korohoda, Rocz. Chem., 1966, 40, 997 CAS;
(c) R. Sarger, US Pat. 4130714, 1978Chem. Abstr., 1980, 92, 94401;
(d) V. Chazeau, M. Cussac and A. Boucherle, Eur. J. Med. Chem., 1992, 27, 615 CrossRef CAS;
(e) V. Chazeau, M. Cussac and A. Boucherle, Eur. J. Med. Chem., 1992, 27, 839 CrossRef.
- C. J. Mappes, E.-H. Pommer, C. Rentzea and B. Zeeh, US 4. 198, 423, 1980Chem. Abstr., 1980, 93, 71784.
-
(a) K. Omar, A. Geronikaki, P. Zoumpoulakis, C. Camoutsis, M. Sokovic, C. Ciric and J. Glamoclija, Bioorg. Med. Chem., 2010, 18, 426 CrossRef CAS PubMed;
(b) P. Vicini, A. Geronikaki, M. Incerti, F. Zani, J. Dearden and M. Hewitt, Bioorg. Med. Chem., 2008, 16, 3714 CrossRef CAS PubMed.
- P. C. Unangst, D. T. Connor, W. A. Cetenko, R. J. Sorenson, C. R. Kostlan, J. C. Sircar, C. D. Wright, D. J. Schrier and R. D. Dyer, J. Med. Chem., 1994, 37, 322 CrossRef CAS PubMed.
- D. Havrylyuk, L. Mosula, B. Zimenkovsky, O. Vasylenko, A. Gzella and R. Lesyk, Eur. J. Med. Chem., 2010, 45, 5012 CrossRef CAS PubMed.
-
(a) D. R. O'Boyle, P. T. Nower, J. A. Lemm, L. Valera, J.-H. Sun, K. Rigat, R. Colonno and M. Gao, Antimicrob. Agents Chemother., 2005, 49, 1346 CrossRef PubMed;
(b) J. L. Romine, S. W. Martin, L. B. Snyder, M. Serrano-Wu, M. S. Desphande and D. Whitehouse, PCT WO 2004/014852 A2, US Patent 7, 183, 302 B2, 2007.
- T. Kline, H. B. Felise, K. C. Barry, S. R. Jackson, H. V. Nguyen and S. I. Miller, J. Med. Chem., 2008, 51, 7065 CrossRef CAS PubMed.
-
(a) S. Peddibhotla, Curr. Bioact. Compd., 2009, 5, 20 CrossRef CAS;
(b) F. Zhou, Y. L. Liu and J. Zhou, Adv. Synth. Catal., 2010, 352, 1381 CrossRef CAS.
-
(a) H. Cao, X. Liu, L. Zhao, J. Cen, J. Lin, Q. Zhu and M. Fu, Org. Lett., 2014, 16, 146 CrossRef CAS PubMed;
(b) J. P. Wan and Y. Y. Liu, RSC Adv., 2012, 2, 9763 RSC;
(c) B. Rajarathinam and G. Vasuki, Org. Lett., 2012, 14, 5204 CrossRef CAS PubMed;
(d) A. Dömling, W. Wang and K. Wang, Chem. Rev., 2012, 112, 3083 CrossRef PubMed;
(e) E. Ruijter, R. Scheffelaar and R. V. A. Orru, Angew. Chem., Int. Ed., 2011, 50, 6234 CrossRef CAS PubMed;
(f) S. Sadjadi and M. M. Heravi, Tetrahedron, 2011, 67, 2707 CrossRef CAS;
(g) N. Isambert, M. M. S. Duque, J. C. Plaquevent, Y. Génisson, J. Rodriguez and T. Constantieux, Chem. Soc. Rev., 2011, 40, 1347 RSC;
(h) V. Estévez, M. Villacampa and J. C. Menéndez, Chem. Soc. Rev., 2010, 39, 4402 RSC;
(i) J. P. Wan, S. F. Gan, G. L. Sun and Y. J. Pan, J. Org. Chem., 2009, 74, 2862 CrossRef CAS PubMed;
(j) B. B. Toure and D. G. Hall, Chem. Rev., 2009, 109, 4439 CrossRef CAS PubMed;
(k) N. Isambert and R. Lavilla, Chem.–Eur. J., 2008, 14, 8444 CrossRef CAS PubMed;
(l) S. Tu, B. Jiang, Y. Zhang, R. Jia, J. Zhang, C. Yao and S. Feng, Org. Biomol. Chem., 2007, 5, 355 RSC;
(m) D. Tejedor and F. Garcia-Tellado, Chem. Soc. Rev., 2007, 36, 484 RSC;
(n) A. Domling, Chem. Rev., 2006, 106, 17 CrossRef PubMed;
(o) D. J. Ramon and Y. Miguel, Angew. Chem., Int. Ed., 2005, 44, 1602 CrossRef CAS PubMed.
-
(a) M. Ghandia, A. Ghomi and M. Kubicki, Tetrahedron, 2013, 69, 3054 CrossRef;
(b) E. Soleimani, S. Ghorbani and H. R. Ghasempour, Tetrahedron, 2013, 69, 8511 CrossRef CAS;
(c) M. S. Singh and S. Chowdhury, RSC Adv., 2012, 2, 4547 RSC;
(d) B. Ganem, Acc. Chem. Res., 2009, 42, 463 CrossRef CAS PubMed;
(e) H. Bienaymé, C. Hulme, G. Oddon and P. Schmitt, Chem.–Eur. J., 2000, 6, 3321 CrossRef;
(f) B. U. W. Maes, R. V. A. Orru and E. Ruijter, Synthesis of Heterocycles via Multicomponent Reaction I & II, Springer, Heidelberg, 2010 Search PubMed.
-
(a) V. A. Chebanov and S. M. Desenko, Chem. Heterocycl. Compd., 2012, 48, 566 CrossRef CAS;
(b) J. E. Biggs-Houck, A. Younai and J. T. Shaw, Curr. Opin. Chem. Biol., 2010, 14, 371 CrossRef CAS PubMed;
(c) A. Dömling and I. Ugi, Angew. Chem., Int. Ed., 2009, 39, 3169 Search PubMed;
(d) J. Zhu and H. Bienayme, Multicomponent Reactions, Wiley-VCH, Weinheim, Germany, 2005 Search PubMed.
-
(a) C. Zorn, F. Gnad, S. Salmen, T. Herpin and O. Reiser, Tetrahedron Lett., 2001, 42, 7049 CrossRef CAS;
(b) T. Sharafi and M. M. Heravi, Phosphorus, Sulfur Silicon Relat. Elem., 2004, 179, 2437 CrossRef CAS;
(c) J. Zhao, C. Peng, L. Liu, Y. Wang and Q. J. Zhu, Org. Chem., 2010, 75, 7502 CrossRef CAS PubMed;
(d) R. O. M. A. De Souza and M. L. A. A. Vas Concellos, Catal. Commun., 2003, 5, 21 CrossRef;
(e) P. R. Krishna, E. R. Sekhar and V. Kannan, Tetrahedron Lett., 2003, 44, 4973 CrossRef;
(f) A. Kumar and S. S. Pawar, Tetrahedron, 2003, 59, 5019 CrossRef CAS;
(g) J. H. Li, X. C. Hu, Y. Liang and Y. X. Xie, Tetrahedron, 2006, 62, 31 CrossRef CAS;
(h) X. Bu, H. Jing, L. Wang, T. Chang, L. Jin and Y. J. Liang, J. Mol. Catal. A: Chem., 2006, 259, 121 CrossRef CAS;
(i) W. Mario, H. Richard and M. Norbert, Chem. Commun., 2011, 47, 2170 RSC.
-
(a) A. S. Kumar, P. Ramesh, G. S. Kumar, J. B. Nanubolu, T. P. Rao and H. M. Meshram, RSC Adv., 2015, 5, 51581 RSC;
(b) P. B. Thakur and H. M. Meshram, RSC Adv., 2014, 4, 5343 RSC;
(c) P. B. Thakur and H. M. Meshram, RSC Adv., 2014, 4, 6019 RSC;
(d) H. M. Meshram, P. Ramesh, B. C. Reddy, B. Shreedhar and J. S. Yadav, Tetrahedron, 2011, 67, 3150 CrossRef CAS;
(e) P. B. Thakur, K. Sirisha, A. V. S. Sarma, J. B. Nanubolu and H. M. Meshram, Tetrahedron, 2013, 69, 6415 CrossRef CAS;
(f) H. M. Meshram, P. Ramesh, A. S. Kumar and A. Swetha, Tetrahedron Lett., 2011, 52, 5862 CrossRef CAS;
(g) H. M. Meshram, D. A. Kumar, B. C. Reddy and P. Ramesh, Synth. Commun., 2010, 40, 39 CrossRef CAS;
(h) H. M. Meshram, P. B. Thakur, M. B. Bejjam and V. M. Bangade, Green Chem. Lett. Rev., 2013, 6, 19 CrossRef CAS.
Footnote |
† Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ra24127h |
|
This journal is © The Royal Society of Chemistry 2016 |
Click here to see how this site uses Cookies. View our privacy policy here.