Jennifer Ludwiga,
Carlos Alarcón-Suescaa,
Stephan Geprägsb,
Dennis Nordlundc,
Marca M. Doeffd,
Inés Puente Orenchef and
Tom Nilges*a
aTechnical University of Munich, Department of Chemistry, Synthesis and Characterization of Innovative Materials, Lichtenbergstr. 4, 85747 Garching, Germany. E-mail: tom.nilges@lrz.tum.de
bWalther Meissner Institute, Bavarian Academy of Sciences and Humanities, Walther-Meissner-Str. 8, 85747 Garching, Germany
cStanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025, USA
dLawrence Berkeley National Laboratory, Energy Storage and Distributed Resources Division, 1 Cyclotron Rd, Berkeley, CA 94720, USA
eInstituto de Ciencia de Materiales de Aragón, Pedro Cerbuna 12, 50009 Zaragoza, Spain
fInstitut Laue-Langevin, 71 Avenue des Martyrs, B.P. 156, 38042 Grenoble Cedex 9, France
First published on 26th May 2017
While the majority of research activities on LiCoPO4 is focussed on the thermodynamically stable olivine-type Pnma polymorph, the metastable Pna21 and Cmcm modifications have recently attracted considerable attention due to their interesting material properties. In this study, we present the first Li-deficient structural derivative of the Cmcm modification with the nominal composition Li0.5−δCoPO4. As opposed to the substoichiometric olivine (Pnma) phases LixCoPO4 (x = 0; 2/3), which are exclusively accessible by electrochemical or chemical Li extraction techniques, this is also the first time that a direct soft-chemical synthesis route towards a LixCoPO4-type material is accomplished. X-ray and neutron diffraction studies indicate that Cmcm-type Li0.5−δCoPO4 shows vacancies on both the Li and Co sites, whereas X-ray absorption spectra demonstrate that the structure features heterovalent Co ions (+2/+3) to compensate for the Li deficit. Magnetic measurements reveal a long-range antiferromagnetic order below 10.5 K. A thorough investigation of the thermal stability using thermogravimetric analysis, differential scanning calorimetry, and temperature-dependent in situ X-ray powder diffraction demonstrates that Li0.5−δCoPO4 is metastable and exhibits a complex, multi-step thermal decomposition mechanism. In the first step at 394 °C, it decomposes to α-Co2P2O7 (P21/c) and LiCoPO4 (Cmcm) upon O2 release. The LiCoPO4 (Cmcm) intermediate is then irreversibly transformed to olivine-type LiCoPO4 (Pnma) at 686 °C. The material properties of Li0.5−δCoPO4 are further compared to the fully lithiated, isostructural LiCoPO4 (Cmcm) phase, for which an improved structure solution as well as Co L2,3-edge X-ray absorption spectra are reported for the first time.
The less common, metastable LiCoPO4 modifications, which crystallize in the space groups Pna21 (ref. 16, 18 and 19) and Cmcm, (ref. 16, 20 and 21) have recently attracted attention because of their interesting material properties and potential applicability as cathode materials for Li-ion batteries. The Pna21 modification exhibits a network of [PO4] and [CoO4] tetrahedra and Li+ ions on tetrahedral sites.18 To date, the polymorph has only been accessible by microwave-assisted synthesis techniques.16,18,19 Pna21-type LiCoPO4 shows the highest redox potential of ∼5.0 V vs. Li/Li+ compared to the other two LiCoPO4 polymorphs.16,18 A single redox peak was observed upon cycling, indicating that the compound is delithiated in one step. However, the electrochemical performance was found to be poor (maximum capacity: 33 mA h g−1).16,18,19 Magnetic measurements indicated a paramagnetic Curie–Weiss-like behavior at high temperatures, and a long-range antiferromagnetic order below TN = 11 K.18 Recently, a structure redetermination suggested that the material is non-stoichiometric and shows Li–Co anti-site defects, which provide an explanation for this poor performance.19 A thorough investigation of the thermal stability revealed that LiCoPO4 (Pna21) converts to the olivine LiCoPO4 (Pnma) modification at 527 °C.19 Interestingly, the Pna21 structure re-emerges as a stable high-temperature phase above 800 °C.19
The LiCoPO4 (Cmcm) polymorph was first reported by Amador et al.20 using a high-pressure, high-temperature synthesis route (6 GPa, 900 °C). Alternative pathways using low-temperature procedures such as microwave-assisted solvothermal16 and polyol21 synthesis have been demonstrated recently. The structure is built from [CoO6] and [PO4] units, with Li+ ions occupying tetrahedral sites. LiCoPO4 (Cmcm) shows a single redox peak at ∼4.3 V vs. Li/Li+ upon cycling,16 which corresponds to the lowest redox potential of all the LiCoPO4 polymorphs. A discharge capacity of only 6 mA h g−1 has been reported, which was associated with the poor conductivity of the material.16 The magnetic characterization suggested a long-range antiferromagnetic order below TN = 11 K at low fields (10 kOe) and the presence of a metamagnetic transition.21 Investigations on the thermal stability showed that the structure is metastable and transforms to olivine-type LiCoPO4 (Pnma) at 575 °C, which then transforms to the Pna21 modification at 675 °C. The thermodynamically stable Pnma-LiCoPO4 phase was obtained after cooling.21
Based on our previous work on the three LiCoPO4 polymorphs,17,19,21 we herein present the first Li-deficient structural derivative of the Cmcm modification with the nominal composition Li0.5−δCoPO4. To the best of our knowledge, this is the first time that a sub-stoichiometric LixCoPO4 phase has been synthesized directly (bottom-up) by a soft-chemical polyol approach as opposed to electrochemical or electrochemical Li extraction (top-down) techniques described in the literature.9,13 The structure, morphology, oxidation state as well as electrochemical and magnetic properties of the novel Cmcm-type phase Li0.5−δCoPO4 are investigated. Moreover, the thermal properties are studied using thermogravimetry, differential scanning calorimetry, and temperature-dependent in situ X-ray powder diffraction. The results are discussed in context of the ‘fully lithiated’ LiCoPO4 (Cmcm) phase, for which an improved structure solution (revealing a sub-stoichiometry reflected by the revised empirical formula Li1−γCoPO4) as well as X-ray absorption spectra are presented for the first time.
To gain further insights into the structural differences causing the peak shifts, a Rietveld refinement was performed, using the previously published structure solution of Cmcm-type LiCoPO4 (ICSD no. 143186)21 as a starting model. Since the elemental analysis indicated an approximate 50% deficit in Li for Li0.5−δCoPO4 compared to Cmcm-LiCoPO4 (cf. Table 2) within standard deviations, the structures were at first refined with fixed Li site occupancy factors of 50% and 100%, respectively, resulting in good reliability factors (Table S1, ESI†). Taking into account that the empirical formulas derived from elemental analysis indicated a deficit in both Li and Co for the two materials (empirical formulas: Li0.45(5)Co0.93(3)P1.00(2)O4 and Li0.93(5)Co0.91(3)P1.00(2)O4; cf. Table 2), we tentatively refined the occupancy factors of the Li and Co sites after having applied an absorption correction.25 In both cases, the free refinement resulted in statistically significant values for the occupancies (39(2)% Li and 96.4(5)% Co for Li0.5−δCoPO4; δ = 0.11(2) and 94(2)% Li and 95.5(5)% Co for LiCoPO4, cf. Table S2, ESI†), indicating that both structures feature vacancies in the cationic substructures and are non-stoichiometric. In both cases, the reliability factors were significantly improved over the previous structure models with fixed occupancies (cf. Tables 1 and S1, ESI†). To simplify the sum formulas of both compounds while still reflecting the off-stoichiometry from the idealized formulas Li0.5CoPO4 and LiCoPO4 (within three standard deviations), the compounds are referred to as Li0.5−δCoPO4 for the Li-deficient phase, and Li1−γCoPO4 (with γ = 0.06(2)) for Cmcm-type LiCoPO4 in this work. It is worth noting that on basis of these refinements, there was no indication for the occurrence of anti-site defects, which are profound for materials synthesized at low temperatures (as observed e.g. in Pna21-type LiCoPO4).19 Furthermore, in contrast to Li0.94(2)Co0.96(1)PO4, the composition of the Li-deficient Cmcm derivative Li0.39(2)Co0.96(1)PO4 would not be charge-balanced assuming that Co is only present in the oxidation state +2. We therefore assume that the deficit in positive electric charge caused by the lower Li+ content is compensated by Co3+ in the framework, which was confirmed by X-ray absorption spectroscopic studies discussed later.
a The estimated standard deviations were calculated by the Berar's procedure and are indicated in parentheses. | ||
---|---|---|
Sample | (a) Li0.5−δCoPO4 | (b) Li1−γCoPO4 |
Empirical formula | Li0.39(2)Co0.96(1)PO4 | Li0.94(2)Co0.96(1)PO4 |
Mr (g mol−1) | 154.3 | 158.1 |
Crystal system | Orthorhombic | Orthorhombic |
Space group (no.) | Cmcm (63) | Cmcm (63) |
Z | 4 | 4 |
a (Å) | 5.3385(2) | 5.4432(3) |
b (Å) | 8.1763(3) | 8.1695(4) |
c (Å) | 6.3716(2) | 6.2128(3) |
V (Å3) | 278.116(19) | 276.28(2) |
F(000) | 297 | 302 |
ρ (calcd) (g cm−3) | 3.684(1) | 3.800(1) |
Rp | 0.0257 | 0.0196 |
Rwp | 0.0327 | 0.0255 |
Rexp | 0.0267 | 0.0252 |
RF | 0.0143 | 0.0106 |
RB | 0.0254 | 0.0184 |
χ2 | 1.23 | 1.01 |
Data/restraints/parameter | 3800/0/59 | 3835/0/57 |
The refined cell parameters (Table 1) indicate a significant contraction along the a axis and an expansion along the c axis for Li0.5−δCoPO4 compared to Li1−γCoPO4, while b is not significantly changed, hence providing an explanation for the peak shifts observed in the PXRD patterns. Furthermore, the respective cell volumes (V = 278.116(19) Å3 vs. 276.28(2) Å3, corresponding to an increase of 0.7%) reveal that the Li0.5−δCoPO4 structure is less dense, which is consistent with the decrease in crystal densities. This is surprising since for the delithiated phases LixCoPO4 and CoPO4 derived from olivine-type LiCoPO4 (Pnma), a significant decrease in cell volume of up to ∼7% (CoPO4) was observed due to the smaller ionic radius of Co3+ compared to Co2+.8,9,11 The slight increase in cell volume might be explained by the fact that our Li-poor Cmcm material was produced from a kinetically controlled synthesis as opposed to Pnma-type CoPO4, which was obtained by electrochemical Li extraction. As a result, the Li ions and voids are likely to be statistically distributed within the Cmcm structure. This would also be in line with investigations on olivine-type LiFePO4, which revealed that materials synthesized at low temperature are prone to disorder, resulting in larger cell volumes than expected.26 However, a thorough investigation of the Li+/vacancy distributions in the structures is beyond this work.
In order to further verify the Li contents and the structure model, we performed additional neutron powder diffraction (NPD) studies of both samples. Rietveld refinements of the NPD data were carried out using the structure parameters obtained from the PXRD experiment as a starting model. Then, the atomic coordinates, thermal parameters as well as occupation factors of Li and Co were refined (see Fig. S2 (ESI†) for the Rietveld fits). The refined lattice parameters (Table S4, ESI†) are in good agreement with the X-ray data. The refinement of the site occupancy factors revealed 37(4)% Li and 98(2)% Co for Li0.5−δCoPO4 (δ = 0.13(4)), and 90(3)% Li and 95(6)% Co for Li1−γCoPO4 (γ = 0.10(3)) (Table S5, ESI†). The compositions and structural parameters of Li0.37(4)Co0.98(1)PO4 and Li0.90(2)Co0.95(6)PO4 are very close to the ones derived from the X-ray experiment and hence confirm the structure model.
The structural differences between Li1−γCoPO4 and its Li-deficient analogue Li0.5−δCoPO4 can be derived from the cell parameters (Table 1) and the interatomic distances (Table S3b and d, ESI†). In general, the framework of Li0.5−δCoPO4 is contracted by ∼0.10 Å in the a dimension and expanded by ∼0.16 Å and ∼0.01 Å along c and b, respectively, as also indicated by the distances between the Co centers in and between the layers. The average Co–O (2.122 Å in Li0.5−δCoPO4 vs. 2.123 Å in LiCoPO4) and P–O (1.539 Å vs. 1.538 Å) distances in the [CoO6] and [PO4] units remain virtually unchanged, which is surprising since one would expect a decrease in the Co–O distances due to the occurrence of a definite amount of the smaller Co3+ ion compared to Co2+ in the structure. The individual bond lengths, however, reveal that both the [CoO6] and [PO4] units show a higher degree of distortion. This is reflected by the fact that the Co–O2 and P–O2 distances (in the ([CoO6][LiO4][PO4])∞ layers) are shortened, whereas the Co–O1 and P–O1 bonds (connecting the layers along b) are expanded, resulting in an increase of the distance between the A–B layers (cf. Co–P distances). On the other hand, the mean Li–O distances are increased by ∼0.4 Å, leading to an expansion of the “channels” along [100]. This is consistent with the increase of the Li–Li distances by ∼0.10 Å. However, it has to be noted that we cannot provide any information about the ordering of the Li+, Co2+, and Co3+ ions or the vacancies in the structure. Based on considerations on the charge distribution, it is likely that the vacancies in the Li0.5−δCoPO4 framework are located next to the Co3+ centers, which would be consistent with DFT (density functional theory) studies12 on the Li+/vacancy distribution in olivine-type Li2/3CoPO4.
a The molar composition is calculated from the experimental values and normalized to the P content (standard deviations in parentheses).b The N and S contents were below the detection limit in both samples (= 0). | ||
---|---|---|
Sample | (a) Li0.5−δCoPO4 | (b) Li1−γCoPO4 |
C (wt%) | 0.4(3) | 0.8(3) |
H (wt%) | 0.5(3) | 0.4(3) |
Li (wt%) | 2.0(2) | 4.1(2) |
Co (wt%) | 35(1) | 34(1) |
P (wt%) | 20.0(3) | 19.6(3) |
n(Li):n(P) | 0.45(5) | 0.93(5) |
n(Co):n(P) | 0.93(3) | 0.91(3) |
Empirical formula | Li0.45(5)Co0.93(3)P1.00(2)O4 | Li0.93(5)Co0.91(3)P1.00(2)O4 |
As shown in our previous work21 on Cmcm-type LiCoPO4, the synthesis method strongly affects the phase composition. Whereas it was observed that the composition (and also the morphology) can be slightly varied by changing the synthesis technique (solvothermal vs. polyol), the molar ratio of the Li, Co, and P precursors represents another, more effective approach towards compositional tuning. For the synthesis of Li1−γCoPO4, the Li:Co:P molar ratio of the starting materials used was 3:1:10, whereas Li0.5−δCoPO4 was obtained from a Li:Co:P ratio of 1:1:10 (cf. experimental part). As a result, different amounts of Li are incorporated in the crystal structures of the products, although the molar amounts of the precursors and contents found in the obtained materials are not correlated linearly. Adjusting the molar ratio of the precursors might therefore provide a synthetic strategy towards other lithium cobalt or transition metal phosphate materials with modified Li contents. Given the fact that the delithiated Pnma phases Li2/3CoPO4 and CoPO4 are only accessible by chemical or electrochemical Li extraction from the fully lithiated olivine-type LiCoPO4 (Pnma) material9,13 and also very instable, this bottom-up approach might also pave the way towards the direct and simple soft-chemical preparation of these Li-deficient intermediates. In that matter, the influence of the synthesis route on the chemical composition will have to be thoroughly examined in further experiments.
Fig. 3 Normalized Co L3-edge XAS spectra in the TEY mode for (a) Li0.5−δCoPO4 (Cmcm, blue), (b) Li1−γCoPO4 (Cmcm, red) along with reference spectra for (c) Oh high-spin Co2+ in CoO (adapted from ref. 24, black), and (d) low- and (e) high-spin Co3+ in EuCoO3 and Sr2CoO3Cl (from ref. 30, both black). (f) shows the difference spectrum resulting from a subtraction of 71% Co2+ from Li0.5−δCoPO4 (orange, Li1−γCoPO4 subtraction), representing the trivalent Co3+ ion in the compound. The Co3+ association and the lower energy shoulder spectral weight are apparent (see text). All datasets have been aligned to match the common energy scale of ref. 24. The vertical dashed lines indicate the energies corresponding to Oh Co2+ (776.4 eV) and Oh Co3+ (779.4 eV). |
Charge balance arguments suggest that Li0.5−δCoPO4 (Cmcm) bears cobalt ions in nominal oxidation states of both +2 and +3. Fitting of the spectrum using principal Co2+ and Co3+ components results in relative contributions of approximately (71 ± 3)% Co2+ and (29 ± 3)% Co3+ (as opposed to (97 ± 3)% Co2+ and (3 ± 3)% Co3+ for Li1−γCoPO4), where the symmetry and spin state of the trivalent Co has some, but not dominating effects on the distribution. These values are in line with the Co2+ and Co3+ contents expected on basis of the nominal composition Li0.5−δCoPO4 (∼50% Co2+ and ∼50% Co3+), but where the Co3+ contribution derived from XAS is lower. The discrepancy can partly be explained by a small but noticeable reduction at the surface, in line with the fact that Co3+ is significantly less stable than Co2+. Moreover, the material was produced using a TTEG solvent, which also acts as a weak reducing agent31,32 and hence, might reduce the Co3+ concentration on the particle surface (cf. probing depth of TEY: 2−5 nm). We note that the more bulk sensitive spectra (FY, not shown) indicated higher spectral weight towards higher energies (and thus more Co3+ in the bulk), consistent with this hypothesis, but the spectra are not of high enough quality to be analyzed or discussed further.
In order to learn more about the symmetry and spin of the Co3+ sites, we have subtracted the fitted Co2+ contribution from the Li0.5−δCoPO4 spectrum (Fig. 3f). We note that while the main intensity difference is centered around the energy associated with the main peak of Co3+ (779.4 V), there is significant intensity on the low-energy side of this peak that is not accounted for by the LS Co3+. Comparison with Co3+ ref. 30 of different spin indicates that the trivalent Co ions are primarily high-spin, which can be rationalized based on the tetragonal distortions in the [CoO6] octahedra (cf. Table S3, ESI†) and the analogous HS Co3+ L-edge spectral assignment upon axial elongations and equatorial contractions in various perovskites30,33,34. The XAS thus indicates that the Li vacancies are indeed inducing distortions near the Co3+ sites that favor the HS Co3+ state. The HS Co3+ state is also consistent with a larger average Co–O distance (i.e., larger ionic radius) than what would be expected from the (smaller) LS Co3+ that only occupies the t2g orbitals and is associated with a stronger, more covalent Co–O interaction (cf. Table S3, ESI†). The presence of HS Co3+ is further consistent with the large magnetic moment (see later).
Fig. 4 Comparison of the FTIR spectra of (a) Li0.5−δCoPO4 (Cmcm, blue), and (b) Li1−γCoPO4 (Cmcm, red, data reproduced from ref. 21). The omitted region of 1700–4000 cm−1 (cf. Fig. S6, ESI†) does not show any absorption bands of water or other impurities. |
The changes observed for the Li-deficient phase Li0.5−δCoPO4 are in line with reports35,36 on olivine-type LixFePO4 (0 ≤ x ≤ 1) which demonstrated that the absorption modes of the [PO4]3− groups are extremely sensitive to the delithiation of LiFePO4 and the associated oxidation of Fe2+ to Fe3+. As discussed, the average P–O distances in Li1−γCoPO4 (Cmcm) remain virtually unchanged when less Li is incorporated in the structure (cf. Table S3, ESI†). Hence, the energies of the absorption modes are not changed drastically, indicating similar local structures of the [PO4]3− units. This is in good agreement with a report by Popović and co-workers,37 which suggested a linear correlation between the P–O bond lengths and stretching frequencies. The observed band splitting, on the other hand, is correlated with interactions between ions, in this case between the [PO4]3− units and the adjacent Li+ and Co2+/3+ cations, i.e. the stronger the interaction, the larger the factor group splitting effects.36 In fact, the P–Li and P–Co distances are reduced in Li0.5−δCoPO4 compared to Li1−γCoPO4 (Table S3, ESI†), which leads to stronger interactions. Furthermore, it was shown38,39 that the factor group splitting of the ν3 modes increases with the second ionization potential of the transition metal due to the formation of strong bonds with the oxygen atoms of the [PO4] units, which causes a redistribution of electron density in the P–O bonds. This is reflected in the observation that the P–O1 bonds are expanded, and the P–O2 bonds shortened by ∼0.02 Å each in Li0.5−δCoPO4 (cf. Table S3, ESI†). Due to the significantly higher ionization potential of Co3+ compared to Co2+, the larger factor group splitting in the IR spectrum of Li0.5−δCoPO4 is therefore the result of the mixed valence state of the Co ions in the structure (Co2+/Co3+) as opposed to Li1−γCoPO4 which contains Co2+ only. However, a thorough analysis of the spectra, including the assignment of the additional absorption band at 1512 cm−1, would require a complete structural model, including the ordering of the Li+, Co2+, and Co3+ ions in the framework as well as DFT calculations, which is beyond the scope of this work. It is likely that the occurrence of additional modes is the result of a lower local symmetry in Li0.5−δCoPO4 due to a higher defect concentration.
The inset of Fig. 5 reveals a more distinct difference of the magnetic properties of Li1−γCoPO4 and the Li-deficient Li0.5−δCoPO4 compounds. LiCoPO4 exhibits a magnetic double-hysteresis loop at 2 K, demonstrating an antiferromagnetic ground state at 0 T (for the hysteresis curves at 11 K and 300 K see Fig. S8, ESI†). Furthermore, the double-hysteresis loop indicates a spin-flip transition at a critical field of around ±3 T, which is much lower than for Pnma-type LiCoPO4.43 Again, this can be attributed to the different structural properties. In contrast, an almost linear dependence of the magnetization as a function of the applied field is observed for Li0.5−δCoPO4 below TN. No hysteresis with a finite remanence caused by a weak ferromagnetic phase due to the mixed-valence state of Co ions were found.40 However, the difference of the magnetic susceptibility recorded under field-cooled (FC) and zero field-cooled (ZFC) conditions suggests the formation of magnetic domains below T ≈ 5 K. Below this temperature, the finite amount of Co3+ ions as well as the observed defects on the Co sites might cause competing magnetic interactions resulting in a complex antiferromagnetic state as, for instance, described by Jensen and co-workers.44
Fig. 7 In situ X-ray powder diffraction patterns (Bragg–Brentano geometry, Cu Kα radiation) of Li0.5−δCoPO4 (Cmcm) measured between 30 °C and 700 °C under air (heating rate: 5 °C min−1; for patterns at 800 °C, 900 °C, and after cooling see Fig. S12, ESI†). The phase undergoes several transitions upon heating. The theoretical patterns of the involved phases, which were calculated from room temperature data, are displayed in color. Between 300 °C and 400 °C, Li0.5−δCoPO4 (Cmcm, this work, blue) decomposes to LiCoPO4 (Cmcm, ICSD no. 432186,21 red) and α-Co2P2O7 (P21/c, ICSD no. 280959,46 green). Above 500 °C, an irreversible transition of LiCoPO4 (Cmcm, blue) to olivine-type LiCoPO4 (Pnma, ICSD no. 431999,45 orange) occurs. The reflections marked with red asterisks () in the pattern at 600 °C can be assigned to residues of LiCoPO4 (Cmcm). |
In order to understand the signals observed in the TGA/DSC study and to identify possible intermediates of the heating process, we performed a temperature-controlled in situ PXRD experiment between room temperature (30 °C) and 900 °C with a step size of 100 °C (Fig. 7). The Rietveld fits of the individual PXRD patterns at each temperature up to 700 °C can be found in Fig. S11 (ESI†). The refined phase fractions and crystallographic details (atomic coordinates, thermal displacements parameters, bond lengths), reflecting the structural changes, are presented in Tables S17–S25.† (Note that the patterns at T ≥ 800 °C, which are shown in Fig. S12 (ESI†), were of insufficient quality for a refinement because of the occurrence of strong reflections from the corundum sample holder.) Up to 300 °C, no change of the diffraction patterns occurs, indicating that the Li0.5−δCoPO4 (Cmcm) phase is thermally stable up to that temperature. Between 300 °C and 400 °C, a mixture of the ‘fully lithiated’ Li1−γCoPO4 (Cmcm) structure (referred to as LiCoPO4 with γ = 0 in Fig. 7 since ICSD no. 432186 (ref. 21) was used for the theoretical pattern) and α-Co2P2O7 (P21/c) is observed. Hence, the endothermic DSC signal at 395 °C can be explained by the decomposition of Li0.5−δCoPO4 (Cmcm) to these phases (the simultaneous mass loss will be explained later in the text). Between 500 °C and 600 °C, the Cmcm-type Li1−γCoPO4 intermediate starts to convert to the thermodynamically more stable olivine Pnma structure, whereas the peaks of α-Co2P2O7 remain unaltered. The fact that the low-temperature α-modification of Co2P2O7 (P21/c) does not transform to the high-temperature β-Co2P2O7 (A2/m)47 phase, which would be expected at ∼480 °C (ref. 48) for the pure material, suggests that the transformation is either kinetically hindered or very slow. Hence, the DSC signal at 688 °C corresponds to the transformation of the Cmcm to the Pnma LiCoPO4 phase. The lower transition temperature found in the in situ PXRD study compared to the DSC data might be related to slightly different atmospheres (air vs. synthetic air) and heating rates (10 °C min−1 vs. 5 °C min−1) being used. The phase transformation is not completed until 700 °C because traces of Li1−γCoPO4 (Cmcm) can be identified in the diffraction pattern at 600 °C. Compared to the thermal stability of the pure, lithiated LiCoPO4 (Cmcm) material (transformation to single-phase LiCoPO4 (Pnma) at 575 °C),21 the phase transition temperature is significantly increased. No further phase changes are observed in the PXRD patterns up to 700 °C, yet the diffraction peaks are shifted to lower angles, indicating bigger lattice dimensions due to thermal expansion. Unfortunately, it cannot be derived from the patterns at T ≥ 800 °C (see Fig. S12, ESI†) whether the Pna21-type LiCoPO4 structure reappears as a high-temperature phase as reported for all three, fully lithiated LiCoPO4 polymorphs (Pnma,17 Pna21,19 and Cmcm21). The pattern of the cooled sample (25 °C; Fig. S12, ESI†) is consistent with the ex situ PXRD experiment (Fig. 6b) and shows reflections of α-Co2P2O7 and Pnma-type LiCoPO4, indicating that both phase transitions are irreversible.
The results of the thorough investigation of the thermal stability of the Li-deficient compound Li0.5−δCoPO4 demonstrate that the phase exhibits a complex behavior upon heating which involves several phase transitions. Based on the combined approach using TGA, DSC (Fig. 6), and in situ PXRD studies (Fig. 7), a decomposition mechanism can be proposed according to Scheme 1. Note that since it is not possible to determine the composition of the decomposition products and intermediates (which are likely to be deficient in Li and Co as well), the mechanism is presented on basis of the nominal composition Li0.5−δCoPO4 with δ = 0. In the first step (eqn (I)), LiCoPO4 (Cmcm) and Co2P2O7 (P21/c; both with Co oxidation state +2) are formed from four equivalents of the Co2+/Co3+ mixed-valent starting material Li0.5−δCoPO4 (Cmcm). This step is based on a redox reaction, in which the two Co3+ equivalents from the four Li0.5−δCoPO4 (δ = 0) units are reduced by O2− ions (eqn (Ia)), which are released upon the pyrophosphate formation (i.e., coupling of isolated [PO4] tetrahedra to [P2O7] units via shared corners). The O2− ions are in turn oxidized to form elemental oxygen (eqn (Ib)) that is released. The O2 release from the phosphate groups corresponds to an approximate mass loss of ∼2.5 wt% which in full agreement with the TGA mass loss step observed at 394 °C (cf. Fig. 6a). The estimated mass fractions of Li1−γCoPO4 (Cmcm, with γ = 0) and Co2P2O7 after the oxygen release are ∼52.4 wt% and ∼47.6 wt%, respectively, and are very close to the refined values obtained from our Rietveld analysis (cf. Fig. 6, and Table S17, ESI†). The slight deviation of our refined values from the calculated ones can be explained by the fact that the nominal composition was used for this hypothesis and that the refinement of phase fractions on basis of the reflection intensities depends on the particle size and crystallinity. In the second step at 686 °C (eqn (II)), which was not accompanied by a significant mass loss in the TGA (Fig. 6a), LiCoPO4 (Cmcm) is transformed to the thermodynamically more stable olivine-type LiCoPO4 (Pnma) as observed in the PXRD study (Fig. 6b).
Scheme 1 Proposed two-step mechanism of the thermal decomposition of Li0.5−δCoPO4 (Cmcm, with δ = 0) and theoretically expected weight fractions (in wt%) of the involved phases during the reaction as well as in the solid remainder after O2 release. It can be inferred that the TGA weight loss (cf. Fig. 7) at 394 °C is due to the release of oxygen as a result of a redox process. The color code of the phases is related to Fig. 6 and 7. |
Interestingly, the decomposition leads to the crystallization of same phases (Pnma-type LiCoPO4 and Co2P2O7) under oxygen evolution as reported for the olivine-like Li-poor phase LixCoPO4.13 However, there are some significant mechanistic differences between Li0.5−δCoPO4 (Cmcm) and LixCoPO4 (Pnma), which might be due to the fact that our studies are based on the pristine material whereas the studies on LixCoPO4 were based on charged LiCoPO4 electrodes. First of all, as reported by Bramnik et al.,13 the decomposition of LixCoPO4 cathodes occurs at much lower temperatures (<200 °C) suggesting that the Li-poor, Cmcm-type Li0.5−δCoPO4 phase (decomposition at 394 °C) is significantly more stable. (Note that compared to the results of Theil et al.,14 on the other hand, Cmcm-type Li0.5−δCoPO4 seems to be less stable than LixCoPO4, which was found to be thermally stable at least up to 550 °C. This discrepancy might be explained by different particle sizes and carbon contents.). Furthermore, in contrast to our material, the Co2P2O7 crystallization was found to be not proceeding simultaneously, but at higher temperature than the LixCoPO4 (Pnma) decomposition, which was related to a possibly amorphous intermediate.13 In addition, the decomposition process was suggested to be promoted by carbon present in samples, which reacts with the released oxygen to form CO2 gas.13 The crucial influence/destabilizing effect of carbon on the thermal stability was also confirmed for charged LiCoPO4 electrodes containing CoPO4.14 Based on this work, however, there is no indication that carbon affects the decomposition of the pristine Li0.5−δCoPO4 (Cmcm) material since the carbon content of our material is not significant (0.4(3) wt%, cf. Table 2). To clarify whether this is also the case for the pristine, carbon-free LixCoPO4 (x = 0, 0.7; space group Pnma) olivine phases (as opposed to the studies13,14 based on carbon-containing charged LiCoPO4 electrodes), our direct synthetic approach might provide a pathway to get a deeper understanding of their intrinsic thermal stabilities as well.
Neutron and X-ray powder diffraction experiments as well as elemental analysis suggested that Li0.5−δCoPO4 (Cmcm) is non-stoichiometric and deficient both in Li and Co, which generates vacancies on both cation sub-lattices in the crystal structure. The occurrence of vacancies was also observed in the course of a structure redetermination of the ‘fully lithiated’ Cmcm phase, resulting in the revised formula Li1−γCoPO4. Co L2,3-edge X-ray absorption spectroscopy indicated that, unlike Li1−γCoPO4 which exclusively contains octahedrally coordinated Co2+ ions, the Li-deficient structure bears both Co2+ and Co3+ ions to compensate for the Li deficit. Due to the reduced Li content and amount of electrochemically active Co2+ ions, the material exhibited a poor electrochemical performance. The thermal stability of Li0.5−δCoPO4 has been studied thoroughly using thermogravimetry, differential scanning calorimetry, and temperature-dependent in situ X-ray powder diffraction experiments. Li0.5−δCoPO4 (Cmcm) is metastable and shows a complex, two-step decomposition mechanism upon heating. At 394 °C, it decomposes to α-Co2P2O7 (P21/c) and Li1−γCoPO4 (Cmcm) in an endothermic reaction upon which oxygen is released as a result of a redox reaction. The Li1−γCoPO4 (Cmcm) phase then irreversibly converts to the thermodynamically more stable LiCoPO4 (Pnma) olivine structure at 686 °C.
To conclude, the present work paves the way towards the direct and simple soft-chemical preparation and investigation of Li-deficient structures derived from lithium transition-metal phosphates. Our methodology provides fundamental insights into the material properties, and hence to study Li-deficient intermediates that are probably involved in the charge/discharge steps of LiCoPO4-type cathodes. It further helps to understand the complex structure chemistry of this class of cathode materials for Li-ion batteries. In that matter, future studies should focus on compositional tuning (e.g. by modifying the amounts of the precursors in the synthesis) in order to identify other partially lithiated structural derivatives.
AAS | Atomic absorption spectroscopy |
AEY | Auger electron yield |
DFT | Density functional theory |
DSC | Differential scanning calorimetry |
EDS | Energy-dispersive X-ray spectroscopy |
FC | Field-cooled |
FTIR | Fourier-transform infrared |
FY | Fluorescence yield |
HS | High-spin |
ICSD | Inorganic Crystal Structure Database |
LS | Low-spin |
NPD | Neutron powder diffraction |
PXRD | Powder X-ray diffraction |
SEM | Scanning electron microscope |
SQUID | Superconducting quantum interference device |
TEY | Total electron yield |
TGA | Thermogravimetric analysis |
TTEG | Tetraethylene glycol |
XAS | X-ray absorption spectroscopy |
ZFC | Zero field-cooled |
Footnote |
† Electronic supplementary information (ESI) available: (1) Comparison of the PXRD patterns of Li0.5−δCoPO4 and Li1−γCoPO4, (2) Rietveld refinement details from PXRD data, (3) Rietveld refinement details from neutron powder diffraction data, (4) additional illustrations of the crystal structure, (5) electrochemical characterization, (6) SEM and EDS analysis, (7) full IR spectra, (8) additional magnetic data, (9) Rietveld refinement details of the PXRD pattern of the sample obtained from the TGA/DSC measurement of Li0.5−δCoPO4 under air, (10) thermal stability under Ar (TGA/DSC, Rietveld refinement), (11) Rietveld fits and crystallographic data of the in situ PXRD patterns (30–700 °C; air), (12) additional in situ PXRD patterns (800 °C, 900 °C, and 25 °C; air). The cif files containing the crystallographic data of Li0.5−δCoPO4 and Li1−γCoPO4 can be obtained from FIZ Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: +49 7247 808 666; e-mail: crysdata@fiz-karlsruhe.de), on quoting the CSD deposition numbers 432850 and 432851. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7ra04043a |
This journal is © The Royal Society of Chemistry 2017 |