Mikhail
Baloban‡
a,
Daria M.
Shcherbakova‡
a,
Sergei
Pletnev‡
b,
Vladimir Z.
Pletnev
c,
J. Clark
Lagarias
d and
Vladislav V.
Verkhusha
*ae
aDepartment of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA. E-mail: vladislav.verkhusha@einstein.yu.edu
bMacromolecular Crystallography Laboratory, National Cancer Institute, Leidos Biomedical Research Inc., Basic Research Program, Argonne, Illinois 60439, USA
cShemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russian Federation
dDepartment of Molecular and Cellular Biology, University of California in Davis, California 95616, USA
eDepartment of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki 00029, Finland
First published on 4th May 2017
Brighter near-infrared (NIR) fluorescent proteins (FPs) are required for multicolor microscopy and deep-tissue imaging. Here, we present structural and biochemical analyses of three monomeric, spectrally distinct phytochrome-based NIR FPs, termed miRFPs. The miRFPs are closely related and differ by only a few amino acids, which define their molecular brightness, brightness in mammalian cells, and spectral properties. We have identified the residues responsible for the spectral red-shift, revealed a new chromophore bound simultaneously to two cysteine residues in the PAS and GAF domains in blue-shifted NIR FPs, and uncovered the importance of amino acid residues in the N-terminus of NIR FPs for their molecular and cellular brightness. The novel chromophore covalently links the N-terminus of NIR FPs with their C-terminal GAF domain, forming a topologically closed knot in the structure, and also contributes to the increased brightness. Based on our studies, we suggest a strategy to develop spectrally distinct NIR FPs with enhanced brightness.
BphPs belong to the phytochrome family of red/far-red photoreceptors found in plants, algae, fungi, cyanobacteria and bacteria.3–5 Their primary function is a light-driven signal transduction. Phytochromes are multi-domain protein photoswitches consisting of conserved PAS (Per-ARNT-Sim), GAF (cGMP phosphodiesterase/adenylate cyclase/FhlA) and PHY (phytochrome-specific) tri-domain light sensing modules that regulate diverged effector output domains. Effector domains define the signaling output function of phytochromes and can confer light-regulated enzymatic activities or binding sites for targeted protein–protein interactions. All phytochromes autocatalytically incorporate linear tetrapyrroles (bilins) as chromophores.6,7 BphPs bind biliverdin IXα (BV), whereas plant and cyanobacterial phytochromes bind the more reduced phytobilins, phytochromobilin (PΦB) or phycocyanobilin (PCB).8,9 BV is the most red-shifted natural chromophore and binds to BphP apoprotein autocatalytically. Importantly, BV is abundant in mammalian cells and tissues as an intermediate product of heme degradation to bilirubin.10–12 For these reasons, BphPs have received the most attention as molecular templates for development of NIR FPs.
Absorption of light initiates a chain of structural transformations in photosensory modules (PAS, GAF, and PHY) and signaling domains that result in activation of all phytochromes. These structural changes are best understood for BphPs,13,14 where the PAS and GAF domains are minimally required for chromophore binding,3 whereas the PHY domains are critical for photoproduct spectral tuning and light-driven signal transduction for all phytochromes.15 Although the BV chromophore resides in the GAF domain of BphPs, it is covalently attached to a conserved Cys located in an N-terminal extension of the PAS domain.3,16–18 In contrast, a different Cys residue located in the GAF domain is responsible for phytobilin chromophore attachment in plant and cyanobacterial phytochromes.6 Recent studies revealed that the introduction of the conserved plant/cyanobacterial GAF-domain's Cys into BphPs by mutagenesis yields strongly fluorescent proteins with covalently bound BV.19
Most phytochromes photoswitch between Pr (red absorbing, 15/16Z (cis) double bond) and Pfr (far-red absorbing, 15/16E (trans) double bond) states.6 For this reason, wild-type phytochromes are only weakly fluorescent.20,21 Fluorescence emission of phytochromes was previously enhanced by chromophore substitution22 and by mutagenesis.23 For engineering of NIR FPs from BphPs, the intrinsic photoisomerization has been suppressed by removal of the PHY domain and by introduction of key mutations in the GAF-domain's chromophore binding pocket, such as residues 201 and 202 (amino acid positions are numbered according to Rhodopseudomonas palustris RpBphP1).20,24 Such mutations appear to minimize the non-radiative energy dissipation pathways, which compete with fluorescence emission.21 In addition to NIR absorbance at the major band, called the Q band, phytochromes also absorb at 400 nm (called the Soret band) which is a characteristic band for tetrapyrroles.25
The first BphP-based NIR FP, termed IFP1.4, was described in 2009.11 Soon after the development of IFP1.4, it became clear that NIR FPs require further optimization to be used in mammalian cells. IFP1.4 is very dim and requires BV supply to be fluorescent in cells. Key properties needing optimization include (i) spectra, (ii) molecular brightness (a product of an extinction coefficient and a quantum yield), and (iii) fluorescence intensity in mammalian cells (termed effective brightness). Effective brightness depends on the number of chromophore-containing fluorescent molecules in the cell and is influenced by protein folding and stability, protein expression level, intracellular BV concentration, and specificity of NIR FP to BV chromophore. The last parameter is important because of the competition with other intracellular heme-related compounds, such as protoporphyrins.26–28
To date, directed molecular evolution approaches and structural studies have resulted in the engineering of different NIR FPs, including IFP1.4/2.0,11,29 IFP1.4rev,30 and Wi-Phy20 from Deinococcus radiodurans DrBphP, mIFP from Bradyrhizobium BrBphP,31 iRFP series from Rhodopseudomonas palustris RpBphP2 and RpBphP6,32–34 PAiRFPs from Agrobacterium tumefaciens AtBphP2,35 BphP1-FP,19 and most recently, the miRFP series of monomeric NIR FPs from RpBphP1.19,36 The iRFP and miRFP series were engineered to specifically incorporate endogenous BV in mammalian cells, resulting in their high effective brightness.
The miRFP series, consisting of miRFP670, miRFP703, and miRFP709 NIR FPs, allowed the protein labeling and development of biosensors in the NIR spectral region. miRFPs are of special interest for structural and biochemical studies, since they evolved from the same RpBphP1 template and differ only by several key amino-acid residues that define their properties. Here, we report their crystal structures, which reveal the roles played by specific amino acids near the BV chromophore in the spectral properties, molecular brightness, and effective brightness in mammalian cells. Our studies also identify a new chromophore in bright blue-shifted NIR FPs and suggest a rational approach for the design of brighter and spectrally distinct NIR FPs.
Fig. 1 Overall structure and chromophores in miRFPs. (A) Structure of miRFP703 (PDB ID code 5VIK). The PAS domain is in blue, the GAF domain is in green. (B) Superimposed structures of miRFP670 (PDB ID code 5VIV, in blue), miRFP703 (PDB ID code 5VIK, in green), and miRFP709 (PDB ID code 5VIQ, in red) showing the chromophores in the binding pocket. (C) Partial sequence alignment of miRFPs showing critical mutations defining their properties. (D–F) Chromophores (rings A and B are only shown) in miRFPs and their respective chemical formulas. Carbon, nitrogen, oxygen, sulfur atoms are in grey, blue, red, yellow, respectively. Chemical formulas are shown below each structure. (D) Chromophore species in miRFP703 and miRFP709. (E and F) Two chromophore species observed in miRFP670. In the chromophore I, BV is bound via the C32 atom to the Cys253 residue in the GAF domain (E). In the chromophore II, BV is bound via the C31 atom to the Cys253 residue in the GAF domain and via C32 to the Cys20 residue in the PAS domain (F). |
All miRFP chromophores adopt C5-Zsyn, C10-Zsyn, C15-Zanti conformations, typical of BphPs in the Pr state (Fig. 1C); whereas their B and C rings are coplanar, the rings A and D are tilted out of plane by (29° and 34°), (27° and 37°) and (19° and 37°) for miRFP703/miRFP709 and miRFP670, respectively. These values are in line with the angles reported earlier for natural BphPs in the Pr state.37–39 Similar to those of natural BphPs, BV chromophores of miRFP703 and miRFP709 are both covalently attached to the protein by a thioether bond between a conserved Cys20 in the PAS domain and the A-ring C32 of bilin4,17 (Fig. 1B, salmon and green colors; Fig. 1D). C2 and C3 atoms of miRFP703 and miRFP709 chromophores are in plane with the rest of the atoms of the ring A, indicating sp2 hybridization (Fig. 1D). Consistent with this interpretation, the carbon atom of the C21 methyl group of both FPs also lies in plane with atoms C2 and C3, as seen in the native parental RpBphP1 construct.39 These structures contrast with those of DrBphP and NIR FPs derived therefrom, which have a double bond between C3 and C31 of BV. Despite these structural differences, the presence of a double bond between C2 and C3 or between C3 and C31 confers similar spectral properties for both DrBphP-based and RpBphP1-based scaffolds.
Unlike single chromophore species in miRFP703 and miRFP709, the chromophore of miRFP670 exists as a mixture of two species (Fig. 1B, blue color). One species has a single covalent bond between the GAF domain Cys253 and C32 atom of the BV chromophore (Fig. 1E), and the other species has two covalent bonds between the PAS domain Cys20 and the GAF domain Cys253 and C32 and C31 atoms of BV, respectively (Fig. 1F). To confirm the presence of the unusual chromophore species covalently linked to two cysteine residues, we calculated the 2Fobs − Fcalc electron density map. The respective electron density map is well defined for the BV chromophore, Cys253, and the side chain of Cys20 (Fig. S2A†). To additionally prove the presence of a covalent bond between Cys20 and the chromophore, we calculated the composite OMIT difference electron density map in the absence of Cys20, Cys253, and BV species (Fig. S2B†). Similar to the 2Fobs − Fcalc map, the OMIT map shows a clearly defined density for the side chain of Cys20 and the Cys20–BV thioether bond.
Both C31 and C21 atoms are out of the plane of the ring A, suggesting the tetrahedral geometry (sp3-hybridization) of C2 and C3 atoms in a saturated pyrrole ring with the C2 carbon adopting an R stereochemistry in both species of miRFP670. Interestingly, the structure in Fig. 1E is similar to one of two singly-linked chromophore species found in the blue-shifted BphP1-FP/C20S protein.19 In this NIR FP, the chromophore species have a double bond between C31 and C32, which is out of conjugation with the rest of the π-electron system, resulting in a blue-shift of the spectra. The miRFP670 structure – albeit novel and unexpected – also is consistent with the blue-shifted spectrum of this NIR FP. Both chromophore systems in miRFP670 are one double bond shorter than that of miRFP703 and miRFP709, thus accounting well for the spectral blue shift.
The covalent bond to Cys253 also alters the position of the ring A in miRFP670 by moving it 1.0–1.5 Å closer to helix α4 (Fig. S1† and 1B). The width of the chromophore-binding pocket is slightly decreased in miRFP670. In all other respects, the chromophore environment of miRFP670 remains almost the same as in miRFP703 and miRFP709. All three chromophoric systems maintain the similar hydrogen bond network and have the same pattern of hydrophobic contacts as the nearby residues (Fig. S3†). Similar to other BphP structures, the pyrrole nitrogen of the rings B and C forms hydrogen bonds with the main chain carbonyl of the amino acid in position 201 and with the conserved “pyrrole” water molecule.20,37
NIR FP | Parental natural BphP | Oligomeric state | Abs, nm | Ex, nm | Em, nm | Extinction coefficient, M−1 cm−1 | Quantum yield, % | Molecular brightness vs. miRFP670 | Effective brightness in HeLa cells vs. miRFP670 | Reference |
---|---|---|---|---|---|---|---|---|---|---|
iRFP670 | RpBphP6 | Dimer | 644 | 643 | 670 | 110000 | 11.7 | 110 | 165.3 | 40 |
iRFP670/C10S | 641 | 640 | 669 | 85400 | 9.8 | 72 | 47.2 | |||
iRFP682 | RpBphP2 | 663 | 660 | 682 | 90000 | 10.6 | 82 | 145.8 | ||
iRFP682/C15S | 659 | 658 | 683 | 53800 | 4.8 | 22 | 37.5 | |||
miRFP670 | RpBphP1 | Monomer | 644 | 642 | 670 | 87400 | 13.4 | 100 | 100 | 36 |
miRFP670/C20S | 644 | 644 | 671 | 71300 | 11.1 | 68 | 41.7 | This work | ||
miRFP670/C20A | 644 | 643 | 672 | 73800 | 9.8 | 62 | 64.2 | This work | ||
miRFP670/AAANAEA | 644 | 643 | 672 | 81500 | 10.9 | 76 | 100.8 | This work | ||
miRFP670/AAANCEA | 644 | 644 | 672 | 89300 | 13.7 | 104 | 123.1 | This work | ||
miRFP703 | 676 | 674 | 703 | 90900 | 8.2 | 64 | 51.9 | 36 | ||
miRFP709 | 684 | 683 | 709 | 78400 | 5.2 | 35 | 41.8 | |||
miRFP709/Y210F | 687 | 687 | 713 | 71900 | 4.4 | 27 | 12.4 | This work |
In an attempt to further shift miRFP709 to the NIR part of the spectrum, we introduced aromatic residues in the immediate BV environment that could potentially form additional stacking interactions with the chromophore. While one of these mutants, such as miRFP709/H254Y, showed a red-shifted emission peak at 714 nm, the brightness decreased dramatically and the signal was barely visible (Fig. S4†). However, we were able to red-shift miRFP709's emission 4 nm further into the NIR spectral region by introducing neutral aromatic Phe instead of polar aromatic Tyr in the immediate chromophore environment. The resulting miRFP709/Y210F variant possesses an extinction coefficient of 71900 M−1 cm−1 and a quantum yield of 4.6% (Fig. 2B and Table 1). Further directed molecular evolution should improve the molecular and cellular brightness of this new monomeric NIR FP.
When miRFP670 and its mutants were analyzed by SDS-PAGE and Zn2+-dependent chromophore-binding assay, an additional band was detected in the miRFP670 sample (Fig. 3C). Interestingly, two bands were observed earlier for iRFP670 and iRFP682, both of which contained two Cys residues.40 The additional band, which migrated faster than the singly linked BV chromophore, is consistent with a more compact protein that is internally cross-linked and thereby experiences a lower frictional drag during electrophoresis. Moreover, this additional band was not present in miRFP670 apoprotein (Fig. 3C), demonstrating a crucial role for BV in the appearance of the second band. The formation of a topologically closed loop in the protein is thus consistent with the presence of two covalent bonds between the BV chromophore and the Cys residues in the PAS and the GAF (Fig. 3D and 1F). In this case, the protein cannot be fully linearized during sample preparation, since its N-terminus is covalently linked to the –PCH– motif of the GAF domain through BV, forming a closed loop.
To confirm that the additional band in the miRFP670 sample originates from the presence of a BV adduct bound to two Cys residues, we tested the same miRFP670 variants with another bilin chromophore PCB. PCB is reduced compared to BV and is able to covalently bind only to the Cys residue in the GAF domain of NIR FPs (Fig. 3E).19,42 Analysis of miRFP670 and its mutants assembled with PCB confirmed that PCB binds covalently, and also revealed that there is no additional band in the miRFP670 sample with PCB (Fig. 3C). Thus, only BV supports the formation of the additional faster running band that is dependent upon both Cys residues in NIR FPs.
SDS-PAGE analysis confirmed that this was indeed the case, despite incomplete cleavage of the three proteins by TEV protease (Fig. 4B). Coomassie blue staining showed that all TEV-treated NIR FPs contained two smaller polypeptides, which can be assigned to the separated PAS and GAF domains, based on their molecular weights (Fig. 4B). For miRFP670 protein, these two bands represent the cleavage products derived from the singly-linked species (Fig. 1E) because the similar bands were also present in the cleavage mixtures of singly-linked miRFP670/C20S and miRFP709 proteins. As expected, Zn2+-dependent staining showed that BV was bound to the cleaved GAF domain in miRFP670/C20S, and to the cleaved PAS domain in miRFP709. In miRFP670, the minor fraction of the BV chromophore was bound to the GAF domain, traces were bound to the PAS domain, and the majority of the bound BV was re-distributed to the upper band. Interestingly, in untreated miRFP670 the relative Zn2+-dependent fluorescence intensity of the lower band, which corresponds to double linked species, was more intense than that of the upper band, which corresponds to singly-linked species in untreated miRFP670. The brighter Zn2+-dependent staining of BV bound to two Cys residues may result from its lower exposure to the SDS denaturing agent. Comparative Zn2+-dependent fluorescence intensities of two upper bands in the untreated and TEV-treated miRFP670 sample suggests that the cleavage of the miRFP670 species with BV bound to two Cys residues yields a linearized crosslinked product that co-migrates with the upper, uncleaved protein band. Taken together, the TEV protease cleavage analysis experimentally confirms the presence of two types of BV chromophores observed in the crystal structure of miRFP670: (i) the chromophore with a covalent bond between C32 and Cys253, and (ii) the chromophore with two covalent bonds between C31 and Cys253 in the GAF domain and C32 and Cys20 in the PAS domain.
Fig. 5 Analysis of miRFP670 and its mutants in vitro and in live mammalian cells. (A) Partial sequence alignment of miRFP670 and its mutants showing introduced mutations. (B) Representative fluorescence images of miRFP670 and its mutants expressed in HeLa cells. Acquisition time for each image is indicated. Scale bar, 10 μm. (C) Effective brightness of miRFP670 and its mutants in HeLa cells analyzed by flow cytometry. The NIR fluorescence was normalized to transfection efficiency by using green fluorescence of co-transfected EGFP. (D) Molecular brightness of miRFP670 and its mutants normalized to that of miRFP670. (E) Kinetics of assembly of apoproteins corresponding to miRFP670 and its mutants with BV (ratio 1.5 to 1) in vitro. The change in the absorbance maximum is shown over time (full spectra are presented in Fig. S3†). (F) Fluorescence signals of equal amounts of apoproteins corresponding to miRFP670 and its mutants fully assembled with BV, normalized to the signal of miRFP670 sample. (G) Same as in (F), but for the proteins assembled with PCB. (H) Same as in (E), but for the proteins assembled with PCB (full spectra are shown in Fig. S4†). |
To understand the molecular basis of these differences, we set up an in vitro assembly experiment. Upon mixing of equal amounts of miRFP670 apoprotein or the two mutant apoproteins with BV in the ratio of 1.5 to 1 (apoprotein to BV), we monitored the kinetics of the BV–apoprotein assembly by measuring time dependent changes in absorbance (Fig. 5E and S5†). For all the studied proteins, the BV binding reached steady state after 30 min (Fig. 5E). We also detected the magnitude of the fluorescence signal of the fully assembled NIR FPs after 2 h (Fig. S5† and 5F). These measurements showed that miRFP670, which contains two chromophore-binding Cys residues, assembled faster than both its C20A and C20S mutants (Fig. 5E). However, there was no difference between the C20A and C20S variants. Interestingly, the fluorescence intensity of the three fully assembled miRFP670 variants mirrored their relative brightness levels observed in mammalian cells (Fig. 5F). This suggested that the apoprotein molecules of miRFP670/C20S incorporated BV less efficiently than miRFP670/C20A in vitro and in live cells.
The data indicate that the substitutions of Cys20 with Ser (and with Ala to a lesser extent) are inhibitory to BV binding. To test the influence of the residue at position 20, we performed a comparative assembly experiment using PCB instead of BV. Since PCB binding requires only Cys253 in the GAF domain, these experiments were designed to understand the influence of the amino acid at position 20 on the thioether linkage formation to Cys253 (Fig. S6†). Unlike the previous BV assembly experiments, there were only slight differences in the fluorescence intensities of the PCB-reconstituted miRFP670 or the two Cys20 mutant holoproteins (Fig. 5G). The kinetics of the PCB binding was indistinguishable among the three miRFP670 variants (Fig. 5H).
To further test this effect, we replaced two upstream Ser residues and two flanking His residues with Ala in both miRFP670/C20A and the original miRFP670 to create miRFP670/AAANAEA and miRFP670/AAANCEA mutants, respectively (Fig. 5A). Both in vivo and in vitro analyses revealed that these substitutions improved the fluorescence brightness of the resulting holoproteins (Fig. 5C, D, F and G). The brightness of in vitro assembled miRFP670/AAANAEA with BV was still lower than miRFP670, whereas its brightness assembled with PCB was nearly equal to that of miRFP670 (Fig. 5F and G).
Importantly, the miRFP670/AAANCEA mutant combines two favorable features, i.e. chromophore binding Cys residue in the PAS and the optimized N-terminus. This NIR FP showed 120% effective brightness in mammalian cells, compared to that of the original miRFP670 (Fig. 5B and C and Table 1), thus becoming the brightest monomeric NIR FP available.
Amino acid residues in positions 201 and 202 influence the spectral properties and brightness of NIR FPs. Both red-shifted NIR FPs, miRFP703 and miRFP709 contain non-polar amino acids in position 201. Although only the side chain of residue 201 is directly involved in hydrogen bond interaction with BV, the nature of this residue is critical for NIR FP fluorescence. It was suggested that the non-polar amino acid in position 201 prevents the formation of a polar hydrogen-bonding network.43 This network is believed to participate in the formation of excited-state intermediates in light-induced chromophore photoswitching.24,41 Phe and Ile residues in positions 201 and 202 shift the spectra further into the NIR region and allow the most red-shifted NIR FPs to be obtained from different BphP templates.34,36 Here, we found that Phe201 causes the red-shift through its interaction with the ring A of the chromophore. Introduction of aromatic amino acids, which could form stacking interactions with the chromophore, shifted the spectra 5 nm further into the NIR, but also resulted in significantly decreased brightness (Fig. S4†). However, by changing polar Tyr210 with neutral Phe in the immediate chromophore environment, we obtained a relatively bright miRFP709/Y210F mutant shifted 4 nm further into the NIR (Fig. 2 and Table 1).
The structure of miRFP670 confirms the key role of the Cys residue introduced into the GAF domain in the spectral blue-shift in NIR FPs.19 This Cys covalently binds BV to yield a mixed chromophore species with one less double bond in the π-conjugated system than the NIR FP mutants with the chromophore-binding Cys residue in the PAS domain only. The resulting sp3 hybridization (tetrahedral geometry) of the C3 atom of the BV adduct apparently allows efficient binding to this GAF-domain's Cys residue, which is located above the chromophore plane. The discovery that the introduction of the GAF-domain's Cys leads to blue-shifted NIR FPs was already applied for the development of NIR FPs from various natural BphP templates, including RpBphP2 and RpBphP6,34 RpBphP1,36 and BrBphP.44
In the present study, structural and biochemical analyses of miRFP670 unexpectedly revealed the presence of a new chromophore species in blue-shifted NIR FPs. In these species, the PAS-domain's Cys also participates in the BV binding, together with the Cys in the GAF domain, to produce a topologically crosslinked knot structure in which BV is dually linked to both Cys20 and Cys253 (Fig. 6A). This crosslink is well detected by SDS-PAGE (Fig. 3 and 4), and we estimate that it is present in approximately half of the miRFP670 molecules. Similar crosslinks have also been detected in other NIR FPs, including dimeric iRFP670, iRFP682 and iRFP713/V256C (ESI Fig. 2† in ref. 40), suggesting the presence of a blue-shifted dual-linked chromophore species in these NIR FPs too. Interestingly, the topologically trapped knot is very uncommon in proteins.18,45
Fig. 6 Features of brightest NIR FPs. (A) Schematics of a figure-eight knot with a closed loop in blue-shifted NIR FP molecules with BV covalently bound to two Cys residues in the PAS domain and the GAF domain. (B) Proposed schematics of the chromophore formation in miRFP670 and other blue-shifted NIR FPs with two chromophore-binding Cys residues. Chromophore I and chromophore II species are the same as observed in miRFP670 (Fig. 1E and F). (C) Comparison of effective brightness in mammalian cells and molecular brightness of monomeric NIR FPs and their mutants. |
In addition to the dual-linked BV chromophore species (Fig. 1F), a single-linked BV chromophore bound via C32 to the GAF-domain's Cys (Fig. 1E) is present in approximately half of the miRFP670 molecules. We propose that the formation of the dual-linked BV adduct occurs by addition of the PAS-domain's Cys to the least substituted vinyl carbon at C32, followed by addition of the GAF domain Cys at C31 (Fig. 6B). In contrast, formation of the singly-linked species in which the GAF-domain's Cys is linked to the C32 and similar to that found in BphP1-FP/C20S19 requires a different mechanism in which the GAF-domain's Cys initially attaches to the C32 position of BV (Fig. 6B).
Dual Cys linkages have been previously observed in cyanobacteriochrome (CBCR) photoreceptors46–49 and in phycobiliproteins,50 but not in BphPs. However, the structures of these adducts differ significantly from those of miRFP670, and they are likely to have different mechanisms for their formation. Indeed, CBCRs and phycobiliproteins incorporate phytobilins, such as PCB, instead of BV as chromophore precursors. A family of dual-linked CBCRs includes PixJ from Thermosynechococcus elongatus, which contains two Cys residues, one in a conserved –DXCF– motif, in addition to the chromophore-binding Cys in the –XCH– motif, which is also conserved in phytochromes. These photoreceptors exhibit blue-to-green photoswitching. This striking blue-shift arises from binding of the Cys residue in the –DXCF– motif to the C10 atom located between the B and C rings of the PCB chromophore,49 which is quite distinct from the dual thioether linkages found in NIR FPs in this paper.
Importantly, blue-shifted NIR FPs with two chromophore-binding Cys residues in the PAS and the GAF domains have higher molecular brightness and effective brightness, compared to their mutants that lack the PAS-domain's Cys. Thus, the new chromophore species bound to two Cys residues appear to be mainly responsible for the increase in the quantum yield. Most probably, two covalent bonds between the ring A and two Cys residues in the PAS and GAF domains fix the position of the ring A in the binding pocket. Hence, more rigid dual-linked chromophore species appear to be responsible for the higher quantum yield observed in blue-shifted NIR FPs with two Cys. Higher extinction coefficient also may be a result of improved BV incorporation in NIR FPs possessing both Cys residues.
Analysis of the cellular brightness of miRFP670 and its mutants clearly demonstrates that molecular brightness of NIR FPs purified from bacteria producing excess of BV does not always correlate with effective brightness in mammalian cells. Surprisingly, the assembly assay of an apoprotein with BV better predicts the effective brightness of closely related NIR FP variants (Fig. 5). This assay allowed us to uncover the negative influence of Ser20 residue and neighbor residues on NIR FP brightness. The actual role of these residues remains unclear. We do see that the rate of chromophore binding is slower for miRFP670/AAANAEA, however, this rate is the same for miRFP670/C20A and miRFP670/C20S. Thus, Ser20 might not be directly involved in chromophore binding. The data in Fig. 5 show that Ser20 and neighboring Ser residues may interfere with efficient chromophore incorporation in the pocket and/or binding to Cys in the GAF domain. Substitution of these residues with Ala considerably increased the molecular and cellular brightness of miRFP670 mutants (Fig. 5). This region likely plays a regulatory role in the knot formation between the PAS and GAF domains; hence, mutations therein are expected to alter the efficiency of chromophorylation. It is also possible that inefficient chromophore binding results in the incorporation of small amounts of non-covalently bound BV, which contribute to a decrease in molecular brightness. This hypothesis is consistent with the appearance of broader absorption spectra of mutants with Cys in the PAS replaced with Ser or Ala residues (Fig. 3B and ref. 40 and 41).
Overall, this work sets a foundation for the rational design of NIR FPs. Introduction of specific amino acids into the BV binding pocket of the GAF domain and in the N-terminus of the PAS domain will direct the molecular evolution toward the development of brighter multispectral NIR FPs from a variety of the natural BphP templates.
Fluorescence spectra were recorded with a FluoroMax-3 spectrofluorometer (Jobin Yvon). Absorbance spectra were measured with a Hitachi U-2000 spectrophotometer. Extinction coefficients were calculated by comparison of the long wavelength peak absorbance with that of the Soret band, using the assumption that Soret bands of all FPs possess the same extinction coefficient of 39900 M−1 cm−1 as BV.11,32 To determine the fluorescence quantum yield, the fluorescence intensity of each FP was compared with that of an equally absorbing acidic ethanol solution of Nile blue dye (quantum yield of 0.27 in acidic ethanol52). The obtained values were corrected for the difference in refractive indexes between water and ethanol.
For kinetic analysis of BV assembly with NIR FP apoproteins, purified apoprotein (15 μM) was mixed with 10 μM BV in PBS containing 1 mM DTT. Absorbance spectra were monitored immediately after mixing (in about 1 min) and at the indicated time points until the absorbance reached a steady state. For TEV protease digestion, the TEV recognition site flanked by Gly resides (–GENLYFQG–) was introduced into an unstructured protein region between the PAS and GAF domains. Purified NIR FPs were boiled for 5 min, cooled and then SelecTEV Protease (Lucigen) and DTT containing buffer were added. The reaction mixture was incubated overnight at 30 °C. The control samples contained no TEV protease.
Footnotes |
† Electronic supplementary information (ESI) available: All experimental details, crystallographic data collection and refinement statistics, full spectra, additional 6 figures and 2 tables. See DOI: 10.1039/c7sc00855d |
‡ These authors contributed equally. |
This journal is © The Royal Society of Chemistry 2017 |