Yuta
Ogura
a,
Katsutoshi
Sato
ab,
Shin-ichiro
Miyahara
a,
Yukiko
Kawano
a,
Takaaki
Toriyama
c,
Tomokazu
Yamamoto
d,
Syo
Matsumura
cd,
Saburo
Hosokawa
b and
Katsutoshi
Nagaoka
*a
aDepartment of Integrated Science and Technology, Faculty of Science and Technology, Oita University, 700 Dannoharu, Oita 870-1192, Japan. E-mail: nagaoka@oita-u.ac.jp
bElements Strategy Initiative for Catalysts and Batteries, Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
cThe Ultramicroscopy Research Center, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
dDepartment of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
First published on 15th January 2018
Ammonia is an important feedstock for producing fertiliser and is also a potential energy carrier. However, the process currently used for ammonia synthesis, the Haber–Bosch process, consumes a huge amount of energy; therefore the development of new catalysts for synthesising ammonia at a high rate under mild conditions (low temperature and low pressure) is necessary. Here, we show that Ru/La0.5Ce0.5O1.75 pre-reduced at an unusually high temperature (650 °C) catalysed ammonia synthesis at extremely high rates under mild conditions; specifically, at a reaction temperature of 350 °C, the rates were 13.4, 31.3, and 44.4 mmol g−1 h−1 at 0.1, 1.0, and 3.0 MPa, respectively. Kinetic analysis revealed that this catalyst is free of hydrogen poisoning under the conditions tested. Electron energy loss spectroscopy combined with O2 absorption capacity measurements revealed that the reduced catalyst consisted of fine Ru particles (mean diameter < 2.0 nm) that were partially covered with partially reduced La0.5Ce0.5O1.75 and were dispersed on a thermostable support. Furthermore, Fourier transform infrared spectra measured after N2 addition to the catalyst revealed that N2 adsorption on Ru atoms that interacted directly with the reduced La0.5Ce0.5O1.75 weakened the NN bond and thus promoted its cleavage, which is the rate-determining step for ammonia synthesis. Our results indicate that high-temperature pre-reduction of this catalyst, which consists of Ru supported on a thermostable composite oxide with a cubic fluorite structure and containing reducible cerium, resulted in the formation of many sites that were highly active for N2 reduction by hydrogen.
Ammonia is usually synthesised by the energy-intensive Haber–Bosch process, which is performed at very high temperatures (>450 °C) and high pressures (>20 MPa) and which accounts for 1–2% of global energy consumption. Approximately 60% of the energy consumed by the process is recovered and stored as enthalpy in the ammonia molecule; but the remaining energy is lost, mostly during hydrogen production from natural gas, ammonia synthesis, and gas separation. The development of methods for reduction of the energy used by this process has been the goal of a considerable amount of research.8 One way to accomplish this would be to replace the iron-based catalysts used in the Haber–Bosch process with a catalyst that would permit the use of milder conditions (lower temperatures and pressures).9–12
Ammonia has been synthesised under ambient conditions with organometallic catalysts, but strong reducing agents and proton sources are generally needed, and the ammonia production rate is too low for practical applications.13–15 Supported ruthenium catalysts are good candidates for ammonia synthesis because they are more active at low temperature and pressure than iron-based catalysts are. The rate-determining step in ammonia synthesis is generally cleavage of the high-energy NN bond of N2 (945 kJ mol−1).13,16 One effective way to accelerate this step is to modify the Ru electronic states.17,18 This can be accomplished by the use of basic catalyst supports and by the addition of a strongly basic promoter; these modifications have been shown to enhance ammonia synthesis activity17,18 by means of a mechanism that involves the transfer of electrons to the Ru metal from the basic components and subsequent transfer of electrons from Ru to the antibonding π-orbitals of N2, which weakens the NN bond and promotes its cleavage.19 The most effective promoter has been reported to be Cs2O.19 The combination of Cs+, Ru, and MgO possesses high ammonia-synthesis activity19,20 and has been used as a benchmark in many studies.9,21 BaO is also an effective promoter, and the combination of Ba2+, Ru, and activated carbon has been used in industrial-scale commercial processes.22 Notably, Ru catalysts supported on non-oxides, such as Ru-loaded electride [Ca24Al28O64]4+(e−)4 (Ru/C12A7:e−) and Ru/Ca(NH2)2, also show high ammonia-synthesis activity.9,23,24 In fact, the ammonia-synthesis activity of Ru/Ca(NH2)2 is higher than the activities of any previously reported Ru catalysts, as well as the activities of 3d transition metal–LiH composites, which are a new class of non-Ru ammonia-synthesis catalysts.25 The high activities of catalysts supported on non-oxides have been attributed to the strong electron-donating ability of the supports. However, the practical utility of these catalysts might be limited by the sophisticated procedures required to prepare them and by their air and moisture sensitivity.
In the 1990s, Aika et al. found that rare earth oxides, such as CeO2 and La2O3, are effective supports for Ru catalysts.26 In addition, we recently reported that a Ru catalyst supported on the rare earth oxide Pr2O3 exhibits high ammonia-synthesis activity.27 Aika et al. reported that the rate of ammonia synthesis over Ru/CeO2 is high when the catalyst has been pre-reduced at 500 °C.26 During pre-reduction, some of the Ce4+ is reduced to Ce3+, and thus an electron is transferred to Ru and then to adsorbed N2 molecules. However, the ammonia synthesis rate is slower over a catalyst that has been pre-reduced at a temperature higher than 500 °C, owing to structural changes associated with sintering of the support. To increase the specific surface area of the catalysts, as well as the reducibility of the Ce4+, various investigators have used composite-oxide supports, such as CeO2–La2O3,28 MgO–CeO2,29,30 BaO–CeO2,31 CeO2–ZrO2,32 and Sm2O3–CeO2,33 for Ru catalysts. However, the ammonia-synthesis rates achieved with these catalysts remain insufficient for practical use. As suggested by Aika et al., the pre-reduction temperature for these catalysts is kept below 500 °C to minimize aggregation of the Ru particles.26
Herein, we report the ammonia-synthesis activity of Ru/La0.5Ce0.5O1.75, a catalyst consisting of Ru supported on a La0.5Ce0.5O1.75 solid solution, which is a composite oxide of CeO2 and La2O3. After pre-reduction at the unusually high temperature of 650 °C, the catalyst exhibited high ammonia-synthesis activity at reaction temperatures from 300 to 400 °C; the activity was the highest among oxide supported Ru catalysts and comparable to that of the most active Ru catalysts reported to date. The thermostable oxide support, which had an average composition of La0.5Ce0.5O1.64 after pre-reduction at 650 °C, consisted of fine Ru particles strongly anchored to the reduced support and had numerous active Ru sites. The dependence of the catalyst structure and state on the reduction temperature was elucidated by means of various characterisation techniques, including energy electron loss spectroscopy (EELS) and scanning transmission electron microscopy (STEM). This catalyst has the advantages of being easy to prepare and stable in the atmosphere, which makes it easy to load into a reactor.
We also compared the ammonia-synthesis rates over various other supported 5 wt% Ru catalysts at 350 °C and 1.0 MPa (Fig. 1b). Each of the catalysts had been pre-reduced at a temperature between 500 and 800 °C, and the ammonia-synthesis rates after reduction at the optimal pre-reduction temperature are displayed. The ammonia-synthesis rate over Ru/La0.5Ce0.5O1.75_650red (“650red” indicates that the catalyst had been reduced at 650 °C before the activity tests) reached 31.3 mmol g−1 h−1 and was much higher than the rates over the other tested catalysts, such as Ru/CeO2_650red (17.2 mmol g−1 h−1) and Ru/La2O3_500red (10.8 mmol g−1 h−1), whose supports each contain one of the rare earth elements in La0.5Ce0.5O1.75, and Ru/Pr2O3_500red (15.7 mmol g−1 h−1),27 which is one of the most active of the oxide-supported Ru catalysts. Furthermore, the ammonia-synthesis rate over Ru/La0.5Ce0.5O1.75_650red was approximately 7.6 times that over Cs+/Ru/MgO_500red (4.1 mmol g−1 h−1), a well-known catalyst that is often used as a benchmark and that is more active than Ba2+/Ru/activated carbon9,34 which is used commercially in ammonia-synthesis processes.22 Note also that the ammonia-synthesis rate over 5 wt% Ru/La0.5Ce0.5O1.75_650red was comparable to that over 10 wt% Ru/Ca(NH2)2 (31.7 mmol g−1 h−1, measured under similar reaction conditions [340 °C, 0.9 MPa]).24
We prepared Arrhenius plots for ammonia-synthesis reactions catalysed by Ru/La0.5Ce0.5O1.75_650red and Cs+/Ru/MgO_500red with the use of the rates at 300, 325, 350, and 375 °C (Fig. 1c). To avoid the contribution of the reverse reaction to the ammonia-synthesis rate, the rate at 400 °C was not used in the plots. The apparent activation energy (Ea) calculated for Ru/La0.5Ce0.5O1.75_650red (64 kJ mol−1) was much lower than that for Cs+/Ru/MgO_500red (100 kJ mol−1), and was comparable to that reported for 10 wt% Ru/Ca(NH2)2 (59 kJ mol−1).24 These results demonstrate that the low apparent activation energy for the reaction over Ru/La0.5Ce0.5O1.75_650red was responsible for the high ammonia-synthesis rate.
We also investigated the effect of reaction pressure on ammonia-synthesis rates at 350 °C (Fig. 1d). Increasing the reaction pressure from 0.1 to 1.0 MPa reportedly has no effect on the ammonia-synthesis rate over Cs+/Ru/MgO_500red.9,24 This result implies that hydrogen atoms strongly adsorbed on the Ru interfere with the activation of N2 molecules (a phenomenon referred to as hydrogen poisoning), which is a typical drawback of conventional Ru catalysts.35,36 In contrast, we observed that at 0.1 MPa, the ammonia-synthesis rate over Ru/La0.5Ce0.5O1.75_650red was 13.4 mmol g−1 h−1, which is the highest value reported for Ru catalysts to date; and the rate increased to 31.3 and 44.4 mmol g−1 h−1 when the pressure was increased to 1.0 and 3.0 MPa, respectively. Hence, we assumed that hydrogen poisoning did not occur over Ru/La0.5Ce0.5O1.75_650red at the tested temperature. To confirm this assumption, we performed kinetic analysis at 350 °C and 0.1 MPa. For that purpose, reaction orders for N2, H2, and NH3 were determined with the assumption of the rate expression (1) (reaction conditions and obtained results are shown in Table S1†).37,38
r = kPN2nPH2hPNH3a | (1) |
As shown in Fig. S1,† H2 reaction orders for Cs+/Ru/MgO_500red and Ru/La0.5Ce0.5O1.75_650red were estimated to be −0.76 and 0.15, respectively. These results indicate that the surface of Cs+/Ru/MgO_500red is strongly poisoned by hydrogen. In contrast, Ru/La0.5Ce0.5O1.75_650red is not poisoned by hydrogen. These results are in good agreement with the observations shown in Fig. 1d. Furthermore, the N2 reaction order for Cs+/Ru/MgO_500red was 1.07, which is in accordance with earlier work.9,37,39 In contrast, it was 0.76 for Ru/La0.5Ce0.5O1.75_650red, indicating that NN bond cleavage, which is the rate-determining step for ammonia synthesis, is relatively promoted over Ru/La0.5Ce0.5O1.75_650red. Moreover, stability of Ru/La0.5Ce0.5O1.75_650red at 350 °C under 3.0 MPa was examined. When an inline gas purifier was installed for cleaning the H2/N2 mixture (Fig. S2†), the ammonia-synthesis rate was stable for 50 h, indicating that Ru/La0.5Ce0.5O1.75 shows long-term stability.
Fig. 2d and e shows EEL spectra extracted from the spectrum imaging data for the centre region (Fig. 2b, green square) of a thick catalyst particle (information about both the surface and the bulk of the particle), the edge (blue square) of the same catalyst particle (information mainly about the particle surface), and the centre (red square) of a thin catalyst particle (information about the particle surface). In all of the EEL spectra, two La M4,5 peaks assignable to La3+ were observed, one at 836.1 and the other at 852.4 eV.40 In addition, all of the EEL spectra showed Ce M4,5 peaks ascribed to Ce3+ and Ce4+ at around 883.4 (as split peaks when the intensity was strong) and 901.8 eV and at 885.6 and 903.5 eV, respectively.40–42 Ce4+ predominated in the centre region (green square) of the thick catalyst particle, whereas Ce3+ predominated at the edge (blue square) of the thick catalyst particle, and the proportion of Ce3+ was highest at the centre (red square) of the thin catalyst particle. EELS maps of Ce in the thick and thin particles clearly showed the same tendency; that is, Ce3+ was enriched near the surface of the catalyst particles (Fig. 2f). These results indicate that a substantial proportion of the Ce4+ atoms located near the surface of the catalyst particles were reduced to Ce3+ at 650 °C.
We used HAADF-STEM imaging and simultaneous EDX and EELS measurements at a higher magnification to study the interaction between the fine Ru particles and the support (Fig. 3). In the HAADF-STEM images shown in Fig. 3a (see Fig. S3† for additional images of the catalyst), we observed fine Ru particles (diameter ≈ 2 nm) dispersed on the composite-oxide support. Spot EDX and EEL spectra were measured for the detection of Ru and the rare earth elements (La and Ce) and the valence state of the rare earth elements, respectively. In the area indicated by the red square in Fig. 3a, the only observable peak, occurring in the EDX spectrum, was assignable to Ru (Fig. 3b, e and h). In contrast, the middle part of the Ru particle (blue square) showed a Ru peak in the EDX spectrum and peaks for La3+, Ce3+, and Ce4+ in both the EDX and the EEL spectra (Fig. 3c, f and i). The EDX and EEL spectra of the support material (green square) showed only peaks for the constituents of the support, that is, La3+, Ce3+, and Ce4+ (Fig. 3d, g and j). These results revealed that the Ru particles were partially covered by partially reduced support material; this result is consistent with a strong metal-support interaction (SMSI).26,43,44 In addition, these observations clearly indicate that fine Ru particles were anchored to the reduced La0.5Ce0.5O1.75 after pre-reduction at the unusually high temperature of 650 °C (Fig. 3k).
Reduction temperature (°C) | Specific surface area (m2 g−1) | H/Rua (—) | Degree of Ce4+ reductionb (%) | Mean Ru particle sizec (nm) | TOFd (s−1) | NH3-synthesis rate at 350 °C and 1.0 MPa (mmol g−1 h−1) |
---|---|---|---|---|---|---|
a Estimated from the H2 chemisorption capacity. b Calculated from the O2 absorption capacity shown in Fig. S7 for the reduced catalysts. c Estimated from the STEM images in Fig. S8. d TOF, turnover frequency. Calculated from the H/Ru value and the ammonia-synthesis rate. | ||||||
500 | 47 | 0.46 | 23 | 1.8 | 0.027 | 22.1 |
650 | 42 | 0.35 | 43 | 1.7 | 0.051 | 31.3 |
800 | 21 | 0.11 | 63 | 2.7 | 0.108 | 20.6 |
We also investigated the influence of the catalyst pre-reduction temperature on the ammonia-synthesis rate and on the properties of Ru/La0.5Ce0.5O1.75 (Fig. 1a and Table 1). Increasing the pre-reduction temperature from 500 to 650 °C had little effect on the mean Ru particle diameter (see Fig. S8† for TEM and EDX mapping images of Ru/La0.5Ce0.5O1.75 after pre-reduction at the various temperatures; note that although the TEM image of Ru/La0.5Ce0.5O1.75_650red in Fig. S8† was obtained after exposure to air, the mean Ru particle diameter was similar to that measured in the absence of air [Fig. 2]). However, increasing the reduction temperature from 650 to 800 °C increased the mean diameter of the Ru particles to 2.7 nm (owing to sintering of the La0.5Ce0.5O1.75 support) and decreased the specific surface area of the catalyst from 42 to 21 m2 g−1. On the other hand, the H/Ru ratio decreased gradually as the pre-reduction temperature was increased from 500 to 800 °C. Note that when the reduction temperature was increased from 500 to 650 °C, the H/Ru ratio decreased from 0.46 to 0.35, but the mean diameter of the Ru particles remained unchanged. These results indicate that the surface Ru atoms were partially covered with partially reduced support material, at least after reduction at 650 °C, owing to the SMSI phenomenon, which is consistent with the EDX and EEL spectra (Fig. 3). The driving force for the SMSI is considered to be reduction of a support, such as TiO2−x and CeO2−x, bearing a coordinately unsaturated metal cation.26,43,44 We estimated the degree of Ce4+ reduction to Ce3+ by measuring the O2 absorption capacity of the reduced Ru/La0.5Ce0.5O1.75; the degrees of reduction were determined to be 23% and 43% after pre-reduction at 500 and 650 °C, respectively, revealing that SMSI occurred, especially at the higher temperature. The degree of Ce4+ reduction for Ru/La0.5Ce0.5O1.75_650red indicates that the average composition of the reduced support was Ce0.5La0.5O1.64. We also observed that the lattice was expanded by pre-reduction, owing both to the formation of Ce3+, which has a larger ionic radius than Ce4+ (1.14 Å versus 0.97 Å in eight coordination), and to the formation of oxygen vacancies. Specifically, the lattice parameter of the cubic fluorite structure of La0.5Ce0.5O1.75, as measured by in situ XRD analysis, increased from 0.5577 nm at room temperature to 0.5596 and 0.5603 nm after treatment with H2 at 500 and 650 °C, respectively (the XRD patterns are compared in Fig. S10†). Note that we confirmed that the lattice expansion that occurred upon treatment with H2 was larger than the thermal expansion observed upon simple heat treatment in air (Fig. S10†). Furthermore, both the SMSI effect and sintering of the Ru particles were greater after reduction at 800 °C than after reduction at the lower temperatures, which we attributed to the drastic decrease in the H/Ru ratio (to 0.11) and to the increase both in the degree of Ce4+ reduction (to 63%) and in the mean diameter of the Ru particles (to 2.7 nm) (Table 1).
To elucidate the influence of the pre-reduction temperature on NN bond cleavage, which is the rate-determining step for ammonia synthesis over Ru/La0.5Ce0.5O1.75, we determined the state of the adsorbed N2 molecules by means of Fourier transform infrared (IR) spectroscopy. The IR spectra measured after addition of 14N2 or 15N2 to Ru/La0.5Ce0.5O1.75_500red and Ru/La0.5Ce0.5O1.75_650red at room temperature are shown in Fig. 4 (the highest temperature at which our IR cell could be used was 650 °C). Both spectra show a peak at 2164 cm−1 and a broader peak at around 1700–1900 cm−1. Note that the wavenumber of the broader peak decreased from 1883 to 1844 cm−1 when the pre-reduction temperature was increased from 500 to 650 °C. In the spectra measured after 15N2 adsorption, the two peaks were observed at lower wavenumbers (2091 and 1819 cm−1) relative to those for the 14N2 spectra, and the wavenumbers were in good agreement with those estimated by consideration of the isotope effect:20,47 2164 cm−1 × (14/15)1/2 = 2091 cm−1 and 1883 cm−1 × (14/15)1/2 = 1819 cm−1. Similar peak shifts ascribable to the isotope effect were observed in the spectrum after adsorption of 15N2 on Ru/La0.5Ce0.5O1.75_650red. Therefore, all of the peaks were assignable to the stretching vibration mode of N2 adsorbed in an end-on orientation on the Ru particles. The peak at 2164 cm−1, the location of which was independent of reduction temperature, was assigned to N2 adsorbed on Ru atoms that interacted only weakly with the reduced support (Fig. 5, indirect interaction). The broader peaks at around 1700–1900 cm−1 were assigned to N2 adsorbed on Ru atoms that interacted directly with the reduced support formed by SMSI (Fig. 5, direct interaction). The peak broadening may reflect the heterogeneous character of the metal-support boundary.
Our results indicate that the NN bond of N2 was weakened by the contribution of SMSI even after reduction at 500 °C, and when the reduction temperature was increased to 650 °C, the contribution of SMSI was greater. That is, the partially reduced support, which is enriched in electrons owing to the reduction of Ce4+ to Ce3+ and to the formation of oxygen vacancies, partially covered the Ru particles. As a result, electron transfer from the reduced support to the Ru metal was greatly enhanced, and the electrons were transferred to the antibonding π-orbitals of N2; thus, the NN bonds of N2 adsorbed on Ru atoms that interacted directly with the reduced support were further weakened. The ratio of the peak area of the higher-wavenumber peak to that of the lower-wavenumber peak decreased when the pre-reduction temperature was increased from 500 to 650 °C, which is consistent with an increase in the contribution of the SMSI.
These results demonstrate that pre-reduction at high temperature induced SMSI and enhanced the turnover frequency (TOF) but decreased the number of Ru active sites because the Ru particles became partially covered by partially reduced support. The fact that active Ru sites (TOF = 0.051 s−1) were abundant (H/Ru = 0.35) after pre-reduction at 650 °C explains the high ammonia-synthesis rate (31.3 mmol g−1 h−1) over Ru/La0.5Ce0.5O1.75_650red. In contrast, after pre-reduction at 800 °C, the Ru sites were very active (TOF = 0.108 s−1), but the number of active Ru sites was small (H/Ru = 0.11); thus the ammonia-synthesis rate over Ru/La0.5Ce0.5O1.75_800red (20.6 mmol g−1 h−1) was lower than that over Ru/La0.5Ce0.5O1.75_650red. Note that the specific surface area of Ru/CeO2_650red was only 20 m2 g−1, the mean diameter of the Ru particles was 3.1 nm, and H/Ru was 0.17, which indicates that sintering of the Ru particles and La0.5Ce0.5O1.75 was retarded in the case of Ru/La0.5Ce0.5O1.75_650red, and thus the H/Ru ratio for this catalyst remained high.
Footnote |
† Electronic supplementary information (ESI) available: Detailed procedures for each method, catalytic performance, STEM-EDX images, and detailed characterizations. See DOI: 10.1039/c7sc05343f |
This journal is © The Royal Society of Chemistry 2018 |